Scale Effects on Spatially Varying Relationships Between Urban Landscape Patterns and Water Quality

2014 ◽  
Vol 54 (2) ◽  
pp. 272-287 ◽  
Author(s):  
Yanwei Sun ◽  
Qinghai Guo ◽  
Jian Liu ◽  
Run Wang
Author(s):  
Yan Zhang ◽  
Yanfang Liu ◽  
Jiawei Pan ◽  
Yang Zhang ◽  
Dianfeng Liu ◽  
...  

Ecosystem services (ESs) are facing challenges from urbanization processes globally. Exploring how ESs respond to urbanization provides valuable information for ecological protection and urban landscape planning. Previous studies mainly focused on the global and single-scaled responses of ESs but ignored the spatially heterogenous and scale-dependent characteristics of these responses. This study chose Wuhan City in China as the study area to explore the spatially varying and scale-dependent responses of ESs, i.e., grain productivity, carbon sequestration, biodiversity potential and erosion prevention, to urbanization using geographically weighted regression (GWR). The results showed that the responses of ESs were spatially nonstationary evidenced by a set of local parameter estimates in GWR models, and scale-dependent indicated by two kinds of scale effects: effect of different bandwidths and effect of grid scales. The stationary index of GWR declined rapidly as the bandwidth increased until reaching to a distance threshold. Moreover, GWR outperformed ordinary least square at both grid scales (i.e., 5 km and 10 km scales) and behaved better at finer scale. The spatially non-stationary and scale-dependent responses of ESs to urbanization are expected to provide beneficial guidance for ecologically friendly urban planning.


Author(s):  
Jessica A. Rubin ◽  
Josef H. Görres

During this 6th Great Extinction, freshwater quality is imperiled by upland terrestrial practices. Phosphorus, a macronutrient critical for life, can be a concerning contaminant when excessively present in waterways due to its stimulation of algal and cyanobacterial blooms, with consequences for ecosystem functioning, water use, and human and animal health. Landscape patterns from residential, industrial and agricultural practices release phosphorus at alarming rates and concentrations threaten watershed communities. In an effort to reconcile the anthropogenic effects of phosphorus pollution, several strategies are available to land managers. These include source reduction, contamination event prevention and interception. A total of 80% of terrestrial plants host mycorrhizae which facilitate increased phosphorus uptake and thus removal from soil and water. This symbiotic relationship between fungi and plants facilitates a several-fold increase in phosphorus uptake. It is surprising how little this relationship has been encouraged to mitigate phosphorus for water quality improvement. This paper explores how facilitating this symbiosis in different landscape and land-use contexts can help reduce the application of fertility amendments, prevent non-point source leaching and erosion, and intercept remineralized phosphorus before it enters surface water ecosystems. This literature survey offers promising insights into how mycorrhizae can aid ecological restoration to reconcile humans’ damage to Earth’s freshwater. We also identify areas where research is needed.


2021 ◽  
Vol 109 ◽  
pp. 105679
Author(s):  
António Carlos Pinheiro Fernandes ◽  
Lisa Maria de Oliveira Martins ◽  
Fernando António Leal Pacheco ◽  
Luís Filipe Sanches Fernandes

2021 ◽  
Vol 13 (19) ◽  
pp. 11067
Author(s):  
Kaige Lei ◽  
Yifan Wu ◽  
Feng Li ◽  
Jiayu Yang ◽  
Mingtao Xiang ◽  
...  

Understanding the relationship between land use/cover pattern and water quality could provide guidelines for non-point source pollution and facilitate sustainable development. The previous studies mainly relate the land use/cover of the entire region to the water quality at the monitoring sites, but the water quality at monitoring sites did not totally reflect the water environment of the entire basin. In this study, the land use/cover was monitored on Google Earth Engine in Tang-Pu Reservoir basin, China. In order to reflect the water quality of the whole study area, the spatial distribution of the determinants for water quality there, i.e., the total nitrogen and total phosphorus (TN&TP), were simulated by the Soil and Water Assessment Tool (SWAT). The redundancy analysis explored the correlations between land use/cover pattern and simulated TN&TP. The results showed that: (1) From 2009 to 2019, forest was the dominant land cover, and there was little land use/cover change. The landscape fragmentation increased, and the connectivity decreased. (2) About 25% TP concentrations and nearly all the TN concentrations at the monitoring points did not reach drinking water standard, which means nitrogen and phosphorus pollution were the most serious problems. The highest output per unit TN&TP simulated by SWAT were 44.50 kg/hm2 and 9.51 kg/hm2 and occurred in areas with highly fragile landscape patterns. (3) TN&TP correlated positively with cultivated and construction land but negatively with forest. The correlation between forest and TN&TP summited at 500–700-m buffer and construction land at 100-m buffer. As the buffer size increased, the correlation between the cultivated land, and the TN weakened, while the correlation with the TP increased. TN&TP correlated positively with the Shannon’s Diversity Index and negatively with the Contagion Index. This study provides a new perspective for exporting the impact of land use/cover pattern on water quality.


2020 ◽  
Vol 12 (14) ◽  
pp. 5500 ◽  
Author(s):  
Yu Song ◽  
Xiaodong Song ◽  
Guofan Shao

Intense human activities and drastic land use changes in rapidly urbanized areas may cause serious water quality degradation. In this study, we explored the effects of land use on water quality from a landscape perspective. We took a rapidly urbanized area in Hangzhou City, China, as a case study, and collected stream water quality data and algae biomass in a field campaign. The results showed that built-up lands had negative effects on water quality and were the primary cause of stream water pollution. The concentration of total phosphorus significantly correlated with the areas of residential, industrial, road, and urban greenspace, and the concentration of chlorophyll a also significantly correlated with the areas of these land uses, except residential land. At a landscape level, the correlation analysis showed that the landscape indices, e.g., dominance, shape complexity, fragmentation, aggregation, and diversity, all had significant correlations with water quality parameters. From the perspective of land use, the redundancy analysis results showed that the percentages of variation in water quality explained by the built-up, forest and wetland, cropland, and bareland decreased in turn. The spatial composition of the built-up lands was the main factor causing stream water pollution, while the shape complexities of the forest and wetland patches were negatively correlated with stream water pollution.


2020 ◽  
Vol 47 (8) ◽  
pp. 1361-1379
Author(s):  
Chao Xu ◽  
Dagmar Haase ◽  
Meirong Su ◽  
Yutao Wang ◽  
Stephan Pauleit

In the context of rapid urbanization, it remains unclear how urban landscape patterns shift under different urban dynamics, in particular taking different influencing factors of urban dynamics into consideration. In the present study, three key influencing factors were considered, namely, housing demand, spatial structure, and growth form. On this basis, multiple urban dynamic scenarios were constructed and then calculated using either an autologistic regression–Markov chain–based cellular automata model or an integer programming-based urban green space optimization model. A battery of landscape metrics was employed to characterize and quantitatively assess the landscape pattern changes, among which the redundancy was pre-tested and reduced using principal component analysis. The case study of the Munich region, a fast-growing urban region in southern Germany, demonstrated that the changes of the patch complexity index and the landscape aggregation index were largely similar at sub- and regional scales. Specifically, low housing demand, monocentric and compact growth scenarios showed higher levels of patch complexity but lower levels of landscape aggregation, compared to high housing demand, polycentric and sprawl growth scenarios, respectively. In contrast, the changes in the landscape diversity index under different scenarios showed contrasting trends between different sub-regional zones. The findings of this study provide planners and policymakers with a more in-depth understanding of urban landscape pattern changes under different urban planning strategies and its implications for landscape functions and services.


Sign in / Sign up

Export Citation Format

Share Document