Effect of Nutrition Factors on the Synthesis of Superoxide Dismutase, Catalase, and Membrane Lipid Peroxide Levels in Cordyceps militaris Mycelium

2006 ◽  
Vol 52 (1) ◽  
pp. 74-79 ◽  
Author(s):  
Zun-sheng Wang ◽  
Yu-xiang Gu ◽  
Qin-sheng Yuan
2002 ◽  
Vol 8 (5) ◽  
pp. 253-256 ◽  
Author(s):  
Ling Li ◽  
Zhiqiang Shen ◽  
Weimin Yang ◽  
Wanling Wu ◽  
Weiping Liu ◽  
...  

The cerebroprotective effects of copper aspirinate [dimeric copper(II) bis(o-acetoxybenzoate)] were investigated in gerbils subjected to 10-min global cerebral ischemia followed b 60-min reperfusion. The results showed that intragastric copper aspirinate (7.5, 15.0 and 30.0 mg Kg−1 ) markedly promoted the recovery of the electroencephalogram amplitude, attenuated the increase of lipid peroxide content and the decrease of superoxide dismutase activity in the cortex during ischemia-reperfusion injury. It suggested that copper aspirinate possesses potential neuroprotective properties, the mechanism of which might be related to an increase of the activity of endogenous superoxide dismutase.


1999 ◽  
Vol 86 (6) ◽  
pp. 1823-1827 ◽  
Author(s):  
A. A. Azenabor ◽  
L. Hoffman-Goetz

Reactive oxygen species may contribute to apoptosis in lymphoid tissues observed after exercise. Thymic and splenic tissues excised from control mice (C) or mice immediately after ( t 0) or 24 h after ( t 24) a run to exhaustion (RTE) were assayed for biochemical indexes of oxidative stress [thymic and splenic membrane lipid peroxides, superoxide dismutase, catalase, plasma uric acid (UA), and ascorbic acid (AA)]. There were significant increases in membrane lipid peroxides in thymus ( P < 0.001) and spleen ( P < 0.001) in acutely exercised mice relative to controls (thymus: C = 2.74 ± 0.80 μM; t 0 = 7.45 ± 0.48 μM; t 24 = 9.44 ±1.41 μM; spleen: C = 0.48 ± 0.22 μM; t 0 = 1.78 ± 0.28 μM; t 24 = 2.81 ± 0.34 μM). The thymic and splenic tissue antioxidant enzymes concentrations of superoxide dismutase and catalase were significantly lower in samples collected at t 0 relative to C and t 24 mice ( P < 0.001). Plasma UA and AA levels were used to assess the impact of the RTE on the peripheral antioxidant pool. There was no significant change in UA levels and a significant reduction in plasma AA concentrations ( P < 0.001); the reduction in plasma AA occurred at t 24 (6.53 ± 1.64 μM) relative to t 0 (13.11 ± 0.71 μM) and C (13.26 ± 1.2 μM). These results suggest that oxidative damage occurs in lymphoid tissues after RTE exercise and that such damage may contribute to lymphocyte damage observed after acute exercise.


Blood ◽  
1968 ◽  
Vol 32 (1) ◽  
pp. 49-58 ◽  
Author(s):  
HERBERT E. KANN ◽  
CHARLES E. MENGEL ◽  
WILHELM D. MERIWETHER ◽  
LARRY EBBERT

Abstract The concept that production of a "perfect" PNH RBC, artificially, might supply information as to the nature of the defect(s) in PNH RBCs was the basis for a study in which normal RBCs were studied after preincubation in concentrated, alkaline solutions of reduced glutathione. These RBCs exhibited the following features of PNH RBCs. 1. Sensitivity to lysis by acidified serum a. pH optimum identical to that of PNH RBCs b. complete prevention by prior heating of serum to 56° C for 30 minutes c. complete prevention by addition of dextran to serum d. complete prevention by removal of magnesium ion from serum, reversed by re-addition of magnesium ion to serum 2. Positive thrombin lysis test. 3. Positive sucrose lysis test. 4. No agglutination in type-compatible serum. 5. No greater than normal agglutination in serum containing isoantibodies or elevated titers of cold agglutinins, but marked enhancement of lytic sensitivity to these antibodies, identical to that achieved with "natural" PNH cells. 6. Positive Hegglin-Maier test. 7. Decreased acetylcholinesterase activity. 8. Increased lysis and lipid peroxide formation during incubation with hydrogen peroxide. The broad scope of these similarities permits cautious speculation that some biochemical feature(s) of PNH RBCs may have been produced in normal RBCs, artificially. The mechanism by which reduced glutathione produces the change is uncertain, but may involve either oxidation of membrane lipid or splitting of membrane protein disulfide bonds, or both.


1994 ◽  
Vol 140 (1) ◽  
pp. 73-77 ◽  
Author(s):  
B Pereira ◽  
L F B P Costa Rosa ◽  
D A Safi ◽  
E J H Bechara ◽  
R Curi

Abstract This study examined the effect of experimental hyperand hypothyroidism on the superoxide dismutase, catalase and glutathione peroxidase activities of rat lymphoid organs (mesenteric lymph nodes, spleen and thymus) and muscles (soleus and gastrocnemius-white portion) for comparison. The capacity for the generation of reducing equivalents was also investigated: activities of glucose-6-phosphate dehydrogenase (pentose-phosphate pathway) and citrate synthase (Krebs cycle). Hyperthyroidism tended to enhance lipid peroxide content in all tissues. This effect may result from (1) a high capacity for the generation of reducing equivalents in cytosol and mitochondria and (2) a reduced activity of catalase in the lymphoid organs and of glutathione peroxidase in the muscles. The process of lipid peroxidation in these tissues caused by hyperthyroidism was probably slowed down by the augmentation of CuZn- and Mn-superoxide dismutase (Mn-SOD) activities observed under this condition. Hypothyroidism tended to diminish lipid peroxidation and did not affect citrate synthase and glucose-6-phosphate dehydrogenase activities in the lymphoid organs and muscles. Low levels of thyroid hormones tended to diminish Mn-SOD and glutathione peroxidase activities. These findings show that the thyroid hormones might be able to regulate the activities of CuZn- and Mn-SOD, and catalase and glutathione peroxidase in the lymphoid organs and skeletal muscles. Journal of Endocrinology (1994) 140, 73–77


2002 ◽  
Vol 18 (3) ◽  
pp. 117-120 ◽  
Author(s):  
Mehtap Kilinc Ozkur ◽  
Meral Sasoglu Bozkurt ◽  
Barbaros Balabanli ◽  
Aysel Aricioglu ◽  
Nilsel Ilter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document