An investigation on the Young’s modulus and impact strength of nanocomposites based on polypropylene/linear low-density polyethylene/titan dioxide (PP/LLDPE/TiO2) using response surface methodology

2015 ◽  
Vol 73 (6) ◽  
pp. 1741-1760 ◽  
Author(s):  
Faramarz Ashenai Ghasemi ◽  
Sajjad Daneshpayeh ◽  
Ismail Ghasemi ◽  
Mohsen Ayaz
2015 ◽  
Vol 815 ◽  
pp. 69-73 ◽  
Author(s):  
Nik Ahmad Faris Nik Abdullah ◽  
Nik Noriman Zulkepli ◽  
Sam Sung Ting ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Kamarudin Hussin ◽  
...  

The purpose of this study was to determine the effect of treated Cyperus Odoratus (CY) with sodium hydroxide (NaOH) on the properties of biodegradable plastics made from linear low density polyethylene (LLDPE)/CY blends. Alkali treatments for natural fibers can increased adhesion between the hydrophilic fibers and hydrophobic matric. After CY was treated with 5% NaOH solution, it can be seen that the tensile strength and Young’s modulus of the LLDPE/CY blends significantly increased. Therefore, alkali treatments can be considered in modifying the properties of natural fibers.


Author(s):  
Catalin Fetecau ◽  
Felicia Stan ◽  
Daniel Dobrea ◽  
Dan Catalin Birsan

In this paper, we investigated the effect of injection molding parameters such as melt temperature, mold temperature, injection speed and holding pressure on the mechanical properties of low density polyethylene reinforced with 2.5 wt% multi-walled carbon nanotubes. The Taguchi methodology with four factors and two levels was used for the design of the injection molding experiments. The mechanical properties were evaluated by tensile tests in the flow direction at room temperature (23 °C) at crosshead speeds of 1 and 5 mm/min. It was found that the mechanical properties can be modified by manipulating the injection molding parameters. The Young’s modulus of the LDPE-MWNTs composite decreased as the melt temperature increased, while mold temperature, injection molding speed and holding pressure have a moderate influence on the Young’s modulus.


2014 ◽  
Vol 803 ◽  
pp. 310-316 ◽  
Author(s):  
S.T. Sam ◽  
Nurul Hani ◽  
H. Ismail ◽  
Nik Noriman ◽  
S. Ragunathan

Natural fiber reinforced composites are increasingly being used in various applications area. Therefore, the processing method and physical properties of these composites are very important parameters in product quality and quaranty. This paper focused on the tensile properties, Fourier transform infrared (FTIR) and water absorption of cogon grass (CG) with low density polyethylene (LDPE)/soya spent flour (SSF) composites. The tensile strength and elongation at break (Eb) of uncompatibilized CG with LDPE/ SSF decreased significantly with increasing of fiber content. However, the Young’s modulus increased with increasing of CG loading. The presence of epoxidized natural rubber (ENR 50) as a compatibilizer increased the tensile strength, Eband Young’s modulus of the composites when compared to uncompatibilized composites. Fourier transform infrared results show distinguishable peaks for compatibilized and uncompatibilized composites. The water absorption for both uncompatibilized and compatibilized composites increased from day 1 until day 21. The presence of ENR 50 as compatibilizer showed lower water absorption percentage compared to uncompatibilized composites.


2009 ◽  
Vol 79-82 ◽  
pp. 1321-1324
Author(s):  
Jung Sheng Chen ◽  
Ku En Ting ◽  
Hui Ching Wang

Diamond-like carbon (DLC) films have attracted great interest due to their outstanding mechanical, biocompatibility, thermal, optical and electrical properties. The DLC films can be produced by microwave plasma chemical vapor deposition (MPCVD) using Argon, methane and hydrogen mixed gases. The film properties depend strongly on the experimental parameters such as substrate temperatures; microwave power, process pressure and hydrogen concentration (H2/Ar+CH4+H2). In this study, the properties of nanomechanics of DLC films with various experimental parameters are firstly discussed which include hardness and Young’s modulus characterizing by depth-sensing nanoindentation technique. The nanoindentation is an excellent method for measuring nanomechanical properties of both bulk and thin films. The probe was conducted using a Berkovich diamond tip. To find the optimized process parameters, the statistical and mathematical response surface methodology (RSM) is used to model and analyze the effect of substrate temperature (T), microwave power (W), process pressure (P) and hydrogen concentration (H) on the properties of nanomechanics of DLC films. The central composite experimental design (CCD) is used to evaluate the interaction parametric effects of multiple experimental variables on process response (hardness and Young’s modulus). The predictive quadratic model proposed herein considering the analysis of variance (ANOVA) are proved to fit and predict values of the hardness and Young’s modulus close to those readings recorded experimentally. The most significant influential factors for maximizing the hardness and Young’s modulus have been identified from the ANOVA table. The RSM technique is demonstrated to be a powerful tool in exploration of the manufacturing parameters space of complex physical process of DLC films deposition by MPCVD.


2013 ◽  
Vol 739 ◽  
pp. 38-41
Author(s):  
Yi Chen ◽  
Yue Peng ◽  
Wen Yong Liu ◽  
Guang Sheng Zeng ◽  
Xiang Gang Li ◽  
...  

Polycarbonate/poly (lactic acid)/(PC/PLA) blend is a kind of novel potential material for introducing the degradability of PLA to high performance PC. However, the bad compatibility between PC and PLA results in poor impact resistance and strength, which limits its applications. For resolving the problem, linear low density polyethylene (LLDPE) was added into blend to improve the mechanical properties, especially the toughness. Meantime, nanosized montmorillonite was also used as an additive for modifying the blend. The results showed that the the tensile and impact strength, the elongation at break of PC/PLA all be improved with the increase of LLDPE, the nanosized montmorillonite could also increase the strength of blends when the content is lower than wt5% of blends.


Sign in / Sign up

Export Citation Format

Share Document