scholarly journals Tert-butyl catechol/alkaline-treated kenaf/jute polyethylene hybrid composites: impact on physico-mechanical, thermal and morphological properties

2018 ◽  
Vol 76 (2) ◽  
pp. 763-784 ◽  
Author(s):  
Md Rezaur Rahman ◽  
Sinin Hamdan ◽  
Elammaran Jayamani ◽  
Akshay Kakar ◽  
Muhammad Khusairy Bin Bakri ◽  
...  
2021 ◽  
pp. 004051752110432
Author(s):  
S Mohd Izwan ◽  
SM Sapuan ◽  
MYM Zuhri ◽  
AR Muhamed

The main purpose of this work is to investigate the effect of benzoyl treatment on the performance of sugar palm/kenaf fiber-reinforced polypropylene hybrid composites. Water absorption tests were carried out to confirm the effect of benzoylation treatment toward fabricating a more hydrophobic behavior of the hybrid composites. Both treated and untreated composites that have 10 wt.% of fiber loading with three different fiber ratios between sugar palm and kenaf (7:3, 5:5, 3:7) were analyzed. Physical and mechanical properties such as tensile, flexural, and impact strength were determined from this study. Morphological properties were obtained using scanning electron microscopy (SEM). It was found that the tensile strength of sugar palm/kenaf-reinforced polypropylene hybrid composites was improved with the treatment of benzoyl with a value of 19.41 MPa. In addition, hybrid composite with treated sugar palm and kenaf fiber T-SP3K7 recorded the highest impact and flexural strength of 19.4 MPa and 18.4 MPa, respectively. In addition, SEM demonstrated that surface treatment enhanced the mechanical properties of the hybrid composites. Overall, it can be suggested that benzoyl-treated composites with a higher volume of kenaf fiber than sugar palm fiber will improve the mechanical characteristics of the hybrid composites.


BioResources ◽  
2016 ◽  
Vol 11 (3) ◽  
Author(s):  
Fui Kiew Liew ◽  
Sinin Hamdan ◽  
Md Rezaur Rahman ◽  
Mohamad Rusop Mahmood ◽  
Md. Mizanur Rahman ◽  
...  

2020 ◽  
pp. 1-12
Author(s):  
Subhakanta Nayak ◽  
Sujit Kumar Khuntia ◽  
Saumya Darsan Mohanty ◽  
Jagannath Mohapatra ◽  
Tapan Kumar Mall

2008 ◽  
Vol 47-50 ◽  
pp. 486-489 ◽  
Author(s):  
Kasama Jarukumjorn ◽  
Nitinat Suppakarn ◽  
Jongrak Kluengsamrong

Natural fiber reinforced polymer composites became more attractive due to their light weight, high specific strength, biodegradability. However, some limitations e.g. low modulus, poor moisture resistance were reported. The mechanical properties of natural fiber reinforced composites can be improved by hybridization with synthetic fibers such as glass fiber. In this research, mechanical properties of short sisal-PP composites and short sisal/glass fiber hybrid composites were studied. Polypropylene grafted with maleic anhydride (PP-g-MA) was used as a compatibilizer to enhance the compatibility between the fibers and polypropylene. Effect of weight ratio of sisal and glass fiber at 30 % by weight on the mechanical properties of the composites was investigated. Morphology of fracture surface of each composite was also observed.


Fibers ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 71
Author(s):  
Oluyemi Ojo Daramola ◽  
Oluwatosin Abiodun Balogun ◽  
Adeolu Adesoji Adediran ◽  
Sheriff Olalekan Saka ◽  
Isiaka Oluwole Oladele ◽  
...  

The incorporation of materials that were formally regarded as agricultural wastes into polymeric matrix has drawn the attention of many researchers in recent years. This research focused on reinforcing high-density polyethylene (HDPE) matrix with treated jute fiber (JF)/oil palm pressed fruit fibers (OPPFF) at varying weight proportions. JF and OPPFF were cut to 2.5 mm length and were chemically treated thereafter with 1 M and 1.5 M sodium hydroxide solution respectively. The composites were produced using the compression molding technique. The morphological characterization of the fibers and composites for untreated and treated samples was studied with the aid of a scanning electron microscope (SEM). Tensile and flexural properties of the produced composite samples were also determined. From the result, the surface morphology of the fiber after treatment showed that there was obvious exposure of the fiber surface and removal of impurities as this influenced the microstructure of the composites and in turn the tensile and flexural properties. Hence, it was observed that 20 wt.% treated jute fiber addition shows the most significant enhancements in terms of tensile and flexural properties. The study exposed the effect of surface modification of JF/OPPF hybridization on HDPE matrix composite.


BioResources ◽  
2018 ◽  
Vol 13 (3) ◽  
pp. 6238-6249
Author(s):  
A. M. Radzi ◽  
S. M. Sapuan ◽  
M. Jawaid ◽  
M. R. Mansor

The effect of sugar palm fiber (SPF) loading was studied relative to the mechanical properties of roselle (RF)/SPF/thermoplastic polyurethane (TPU) hybrid composites. RF/SPF/TPU hybrid composites were fabricated at different weight ratios (100:0, 75:25, 50:50, 25:75, and 0:100) by melt mixing and hot compression. The mechanical (tensile, flexural, and impact test) and morphological properties of tensile fractured samples were examined using a universal testing machine, impact machine, and scanning electron microscope. It was found that the hybridization of RF/SPF increased its impact strength corresponding to the increases in the SPF content of the composites. The tensile and flexural properties of the hybrid composites decreased due to poor interfacial bonding between the fiber and matrix. Scanning electron micrographs of the tensile fractured surface of the RF/SPF hybrid composites revealed fiber pullouts and poor adhesion bonding. In conclusion, the hybridization of SPF with RF/TPU composites enhanced its impact strength while decreasing the tensile and flexural strength.


Sign in / Sign up

Export Citation Format

Share Document