Imidazolium ionic liquid compatibilizers in melt-blended styrene-butadiene rubber/aramid pulp composites

2018 ◽  
Vol 76 (7) ◽  
pp. 3451-3462 ◽  
Author(s):  
Vinícius Demétrio da Silva ◽  
Marly Maldaner Jacobi ◽  
Henri Stephan Schrekker ◽  
Sandro Campos Amico
2019 ◽  
Vol 92 (3) ◽  
pp. 531-545
Author(s):  
Jiji Abraham ◽  
Ajesh K. Zachariah ◽  
Runcy Wilson ◽  
Rigoberto Ibarra-Gómez ◽  
Rene Muller ◽  
...  

ABSTRACT Ionic liquid modified multiwalled carbon nanotube (MWCNT) based styrene–butadiene rubber (SBR) nanocomposites were prepared with the two-roll mill mixing method, and the rheological measurements were used to study the dispersion of MWCNTs on a microscopic scale and its compatibility with the SBR matrix. Viscous liquid-like rheological behavior at low MWCNT loadings and pseudo-solid-like rheological response at high MWCNT loadings were observed, showing the gradual transformation from individual structures of MWCNTs to polymer bridged MWCNT networks. A decrease in the mobility of SBR macromolecular chains by the geometric confinement of three-dimensional networks of MWCNTs further confirms the interdeveloped pseudo-solid behavior of filled composites. Dynamic viscoelasticity data have been compared with the theoretical Carreau–Yasuda equation. Transmission electron microscopy of the samples reveals that MWCNTs are randomly dispersed in the rubber matrix. Finally the nature of the filler association and its role in the nonlinear viscoelastic properties at large strain amplitudes were investigated.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5407
Author(s):  
Magdalena Gaca ◽  
Cyril Vaulot ◽  
Magdalena Maciejewska ◽  
Magdalena Lipińska

The goal of this work was to study the effect of graphene nanoplatelets (GnPs) modified with ionic liquid (IL) on properties of styrene–butadiene rubber (SBR) composites. GnPs were decorated with IL or were modified in bulk directly during rubber mix preparation. The ionic liquid used was 1-butyl-4-methylpyridinium tetrafluoroborate (BMPFB). The textural properties were studied to confirm surface modification of GnPs with BMPFB. In these investigations, the impact of the concentration of GnPs and the effect of the method of GnPs’ modification with IL on elastomers properties are described. Some thermal measurements (e.g., differential scanning calorimetry and thermogravimetry) were conducted to characterize the thermal stability or the vulcanization process of the investigated samples. Complementary experimental techniques were used to investigate the properties of the obtained elastomers, specifically tensile testing, and electrical and barrier property measurements. The deposition of IL on the GnPs’ surface positively influenced the mechanical and barrier properties of elastomers. However, samples containing graphene nanoplatelets modified from solution were characterized by less electrical conductivity. SEM analysis was additionally performed to investigate GnPs’ dispersion within SBR composites.


2013 ◽  
Vol 86 (3) ◽  
pp. 367-400 ◽  
Author(s):  
Kalaivani Subramaniam ◽  
Amit Das ◽  
Klaus Werner Stöckelhuber ◽  
Gert Heinrich

ABSTRACT Carbon nanotubes (CNTs) are known for excellent electrical conductivity and high elastic modulus. But difficulties arise in realizing their potential in matrices due to their existence in the form of aggregates or agglomerates. A simplified mixing technique using ionic liquid (IL) was developed to improve the dispersion of CNTs in elastomers. At first, CNTs were modified using an IL, 1-butyl-3-methyl-imidazolium-bis-(trifluoromethylsulfonyl)-imide in a mortar and pestle, and later, the modified tubes were incorporated into elastomers using a two-roll mill. The effect of modified tubes and IL on polar polychloroprene and nonpolar solution styrene butadiene rubber is studied. Enhanced dispersion and networking of CNTs can be achieved using this technique, based on which highly conducting composites were developed. Moreover, the composites with modified CNTs exhibited higher mechanical properties (tensile modulus, hardness) and thermal stability than the composites with unmodified CNTs. ILs are also found to have multifunctional roles (as antioxidants, as coupling agents) in the composites. The applications of composites with a particular focus on actuators and sensors are also discussed.


Sign in / Sign up

Export Citation Format

Share Document