nonpolar solution
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 2)

H-INDEX

10
(FIVE YEARS 0)

Author(s):  
S. A. Tikhomirov

Herein, using the femtosecond absorption spectroscopy method, the dynamics of the nonstationary induced absorption spectra of diflavonoid 3,7-dihydroxy-2,8-di(4-methoxyphenyl)-4H, 6H-pyrano[3,2-g]chromene-4,6-dione (DFV) in solvents of different polarities is studied. It is found that the rapid transformation of the transient absorption spectra of DFV in time is due to the processes of intramolecular protons transfer in excited singlet states. For a nonpolar solvent, two protons are transferred in two stages. Initially, during the sub-picosecond times, a form with a single transferred proton is formed from the Frank-Condon state. From this transition state, in a time range of about 9 ps, the second proton is transferred and the two proton transfer tautomer with a high quantum yield of fluorescence ~0.66 is formed, which has the gain band in the transient absorption spectra. For the polar solvent dimethylformamide only the short-lived form with a single proton transferred is formed also during the subpicosecond times practically the same ones as for the nonpolar solution and has a lifetime of about 20 ps. The polarity of the medium, which affects the formation of a set of the “closed” and “open” forms of DFV in the ground state, differing in relative positions in the space of hydroxyl and carbonyl groups, largely determines the mechanism of the intramolecular proton transfer process in the DFV molecule, which consists in the sequential transfer of two protons in a non-polar solvent to form a fluorescent long-lived tautomer and the transfer of one proton in polar solvents to form a short-lived non-fluorescent form.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 618
Author(s):  
Meng Zhang ◽  
Songjia Han ◽  
Zhi-Yang Xuan ◽  
Xiaohui Fang ◽  
Xiaoming Liu ◽  
...  

Silver nanowire (AgNW)-coated thin films are widely proposed for soft electronics application due to their good conductivity, transparency and flexibility. Here, we studied the microwave welding of AgNW-based soft electrodes for conductivity enhancement. The thermal effect of the microwave to AgNWs was analyzed by dispersing the nanowires in a nonpolar solution, the temperature of which was found to be proportional with the nanowire diameters. AgNWs were then coated on a thin film and welded under microwave heating, which achieved a film conductivity enhancement of as much as 79%. A microwave overheating of AgNWs, however, fused and broke the nanowires, which increased the film resistance significantly. A soft electrode was finally demonstrated using the microwave-welded AgNW thin film, and a 1.13 µA/mM sensitivity was obtained for glucose sensing. Above all, we analyzed the microwave thermal effect on AgNWs to provide a guidance to control the nanowire welding effect, which can be used for film conductivity enhancement and applied for soft and bio-compatible electrodes.


2015 ◽  
Vol 119 (45) ◽  
pp. 14479-14485 ◽  
Author(s):  
Takuya Sumi ◽  
Ralf Dillert ◽  
Satoshi Horikoshi

2013 ◽  
Vol 86 (3) ◽  
pp. 367-400 ◽  
Author(s):  
Kalaivani Subramaniam ◽  
Amit Das ◽  
Klaus Werner Stöckelhuber ◽  
Gert Heinrich

ABSTRACT Carbon nanotubes (CNTs) are known for excellent electrical conductivity and high elastic modulus. But difficulties arise in realizing their potential in matrices due to their existence in the form of aggregates or agglomerates. A simplified mixing technique using ionic liquid (IL) was developed to improve the dispersion of CNTs in elastomers. At first, CNTs were modified using an IL, 1-butyl-3-methyl-imidazolium-bis-(trifluoromethylsulfonyl)-imide in a mortar and pestle, and later, the modified tubes were incorporated into elastomers using a two-roll mill. The effect of modified tubes and IL on polar polychloroprene and nonpolar solution styrene butadiene rubber is studied. Enhanced dispersion and networking of CNTs can be achieved using this technique, based on which highly conducting composites were developed. Moreover, the composites with modified CNTs exhibited higher mechanical properties (tensile modulus, hardness) and thermal stability than the composites with unmodified CNTs. ILs are also found to have multifunctional roles (as antioxidants, as coupling agents) in the composites. The applications of composites with a particular focus on actuators and sensors are also discussed.


2004 ◽  
Vol 126 (12) ◽  
pp. 3868-3879 ◽  
Author(s):  
P. Davide Cozzoli ◽  
Roberto Comparelli ◽  
Elisabetta Fanizza ◽  
M. Lucia Curri ◽  
Angela Agostiano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document