Innovation of high-performance adsorbent based on modified gelatin for wastewater treatment

2022 ◽  
Author(s):  
Mahmoud H. Abu Elella ◽  
Nema Aamer ◽  
Yasser M. A. Mohamed ◽  
Hossam A. El Nazer ◽  
Riham R. Mohamed
2010 ◽  
Vol 62 (10) ◽  
pp. 2450-2458 ◽  
Author(s):  
Angela Yu-Chen Lin ◽  
Cheng-Fan Lin ◽  
Yu-Ting Tsai ◽  
Hank Hui-Hsiang Lin ◽  
Jie Chen ◽  
...  

Pharmaceuticals and personal care products (PPCPs) constitute a class of chemicals of emerging concern due to the potential risks they pose to organisms and the environment, even at low concentrations (ng/L). Recent studies have found that PPCPs are not efficiently removed in secondary wastewater treatment plants (WWTPs). This study has: (1) simultaneously investigated the occurrence of sixty-one PPCPs using solid phase extraction and high-performance liquid chromatography-tandem mass spectrometry, (2) evaluated removal efficiencies of target PPCPs in six WWTPs that discharge effluents into major Taiwanese rivers, and lastly (3) examined matrix interference during analysis of target PPCPs in water samples. The twenty target PPCPs were chosen for their high detection frequencies, high influent concentrations, and stability during wastewater treatment processes. Caffeine and acetaminophen were detected at the highest concentrations (as high as 24,467 and 33,400 ng/L) and were effectively removed (both >96%); other PPCPs were detected in the high ng/L range but were not effectively removed. Matrix interference (by ion suppression or enhancement) during the analysis resulted in underestimation of the removal efficiencies of erythromycin-H2O, cefazolin, clarithromycin, ibuprofen, diclofenac, clofibric acid and gemfibrozil.


2022 ◽  
Vol 29 ◽  
pp. 101017
Author(s):  
Xin-Yu Ma ◽  
Ting-Ting Fan ◽  
Gang Wang ◽  
Zhen-Huan Li ◽  
Jia-Horng Lin ◽  
...  

2006 ◽  
Vol 53 (3) ◽  
pp. 9-15 ◽  
Author(s):  
H.-J. Jördening ◽  
K. Hausmann ◽  
B. Demuth ◽  
M. Zastrutzki

This work focuses on the implementation of high performance systems to the wastewater treatment of sugar factories. For this purpose, systems with immobilised bacteria were studied. For the hydrolysis of organic matter and denitrification, fluidized bed reactors were used. The nitrification was studied with an airlift reactor system. Both hydrolysis and nitrogen elimination were investigated on laboratory and pilot scales in sugar factories. Although with porous materials higher biomass concentrations are attainable for the hydrolysis (up to 55 kg/m3), for economical reasons sand was used (22.5 kg/m3) for the pilot scale-study. With a pilot-scale reactor (volume 1 m3) the maximum sucrose conversion rate achieved with sand in the first campaign was 52 kg/(m3 d). For the nitrogen elimination on the pilot scale, a system with denitrification and nitrification was combined. The highest performance for the nitrification (reactor volume: 0.68 m3) with pumice as support material was 1.2 kg NH4-N/(m3 d), limiting the whole system. The denitrification rate (reactor volume: 0.12 m3) was four times higher (3.5–5 kg NO3-N/(m3 d). Rules of the modelling of the system are discussed.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1639 ◽  
Author(s):  
R. Guedes-Alonso ◽  
S. Montesdeoca-Esponda ◽  
J. Pacheco-Juárez ◽  
Z. Sosa-Ferrera ◽  
J. J. Santana-Rodríguez

To encourage the reutilization of treated wastewaters as an adaptation strategy to climate change it is necessary to demonstrate their quality. If this is ensured, reclaimed waters could be a valuable resource that produces very little environmental impact and risks to human health. However, wastewaters are one of the main sources of emerging pollutants that are discharged in the environment. For this, it is essential to assess the presence of these pollutants, especially pharmaceutical compounds, in treated wastewaters. Moreover, the different treatment processes must be evaluated in order to know if conventional and natural treatment technologies are efficient in the removal of these types of compounds. This is an important consideration if the treated wastewaters are used in agricultural activities. Owing to the complexity of wastewater matrixes and the low concentrations of pharmaceutical residues in these types of samples, it is necessary to use sensitive analytical methodologies. In this study, the presence of 11 pharmaceutical compounds were assessed in three different wastewater treatment plants (WWTPs) in Gran Canaria (Spain). Two of these WWTPs use conventional purification technologies and they are located in densely populated areas, while the other studied WWTP is based in constructed wetlands which purify the wastewaters of a rural area. The sampling was performed monthly for two years. A solid phase extraction (SPE) coupled to ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method was applied for the analysis of the samples, and the 11 pharmaceuticals were detected in all the studied WWTPs. The concentrations were variable and ranged from ng·L−1 in some compounds like diclofenac or carbamazepine to µg·L−1 in common pharmaceutical compounds such as caffeine, naproxen or ibuprofen. In addition, removal efficiencies in both conventional and natural purification systems were evaluated. Similar removal efficiencies were obtained using different purifying treatments, especially for some pharmaceutical families as stimulants or anti-inflammatories. Other compounds like carbamazepine showed a recalcitrant behavior. Secondary treatments presented similar removal efficiencies in both conventional and natural wastewater treatment plants, but conventional treatments showed slightly higher elimination ratios. Regarding tertiary system, the treatment with highest removal efficiencies was reverse osmosis in comparison with microfiltration and electrodialysis reversal.


2003 ◽  
Vol 47 (11) ◽  
pp. 101-107 ◽  
Author(s):  
I.D.R. Mackinnon ◽  
K. Barr ◽  
E. Miller ◽  
S. Hunter ◽  
T. Pinel

Return side streams from anaerobic digesters and dewatering facilities at wastewater treatment plants (WWTPs) contribute a significant proportion of the total nitrogen load on a mainstream process. Similarly, significant phosphate loads are also recirculated in biological nutrient removal (BNR) wastewater treatment plants. Ion exchange using a new material, known by the name MesoLite, shows strong potential for the removal of ammonia from these side streams and an opportunity to concurrently reduce phosphate levels. A pilot plant was designed and operated for several months on an ammonia rich centrate from a dewatering centrifuge at the Oxley Creek WWTP, Brisbane, Australia. The system operated with a detention time in the order of one hour and was operated for between 12 and 24 hours prior to regeneration with a sodium rich solution. The same pilot plant was used to demonstrate removal of phosphate from an abattoir wastewater stream at similar flow rates. Using MesoLite materials, >90% reduction of ammonia was achieved in the centrate side stream. A full-scale process would reduce the total nitrogen load at the Oxley Creek WWTP by at least 18%. This reduction in nitrogen load consequently improves the TKN/COD ratio of the influent and enhances the nitrogen removal performance of the biological nutrient removal process.


2016 ◽  
Vol 75 (2) ◽  
pp. 387-396 ◽  
Author(s):  
I. Reinholds ◽  
O. Muter ◽  
I. Pugajeva ◽  
J. Rusko ◽  
I. Perkons ◽  
...  

Pharmaceutical products (PPs) belong to emerging contaminants that may accumulate along with other chemical pollutants in wastewaters (WWs) entering industrial and/or urban wastewater treatment plants (WWTPs). In the present study, the technique of ultra-high-performance liquid chromatography coupled to Orbitrap high-resolution mass spectrometry (Orbitrap-HRMS) was applied for the analysis of 24 multi-class PPs in WW samples collected at different technological stages of Daugavgriva WWTP located in Riga, Latvia. Caffeine and acetaminophen levels in the range of 7,570–11,403 ng/L and 810–1,883 ng/L, respectively, were the predominant compounds among 19 PPs determined in the WW. The results indicate that aerobic digestion in biological ponds was insufficiently effective to degrade most of the PPs (reduction efficiency <0–50.0%) with the exception of four PPs that showed degradation efficiency varying from 55.0 to 99.9%. Tests of short-term chemical and enzymatic hydrolysis for PP degradation in WW samples were performed, and the results reflected the complexity of different degradation mechanisms and physicochemical transformations of PPs. The toxicological studies of WW impact on Daphnia magna indicated gradual reduction of the total toxicity through the treatment stages at the WWTP.


2008 ◽  
Vol 58 (6) ◽  
pp. 1245-1251 ◽  
Author(s):  
C. Newton ◽  
J. P. Wilson

Wastewater from small communities often has a greater environmental impact than conventional on-site treatment systems can mitigate, yet the flow rate is too low to achieve economies of scale with municipal treatment processes. As a result, the cost of wastewater treatment is often beyond the financial means of the community, in terms of capital costs and annual operational costs. The recirculating gravel filter (RGF) is an attached-growth treatment process for wastewater from small communities. In the RGF process, pre-settled wastewater is recirculated through a gravel filter bed, while a biofilm on the filter media oxidizes the organic matter and ammonia. Effluent from the RGF process has equivalent or lower concentrations of BOD5, TSS and ammonia nitrogen as effluent from other wastewater treatment processes typically employed in small communities. Two small communities in Washington State, USA, have selected the RGF process for wastewater treatment, due to low operational costs, simplicity of equipment, and high effluent quality. For the two communities, the RGF wastewater treatment facilities were estimated to have somewhat lower construction costs and significantly lower annual operational costs than the alternatives evaluated. Low annual operational expenses are important for wastewater system sustainability in small communities.


2020 ◽  
Author(s):  
Silambarasi Mooralitharan ◽  
Zarimah Hanafiah ◽  
Teh Sabariah Abd Manan ◽  
Hassimi Hasan ◽  
Henritte Jensen ◽  
...  

Abstract The fungi-based technology, wild-Serbian Ganoderma lucidum (WSGL) as myco-alternative to existing conventional microbial-based wastewater treatment is introduced in this study as a potential alternative treatment. The mycoremediation is highly persistent for its capability to oxidatively breakdown pollutant substrates and widely researched for its medicinal properties. Utilizing the non-hazardous properties and high degradation performance of WSGL, this research aims to find optimum conditions and model the mycoremediation treatment design for Chemical Oxygen Demand (COD) and Ammonia Nitrogen (AN) removal in domestic wastewater via response surface methodology (RSM). Combined process variables were temperature (⁰C) (Model 1) and the volume of mycelial pellets (%) (Model 2) against treatment time (hour). Response variables for these two sets of central composite design (CCD) were the removal efficiencies of COD (%) and AN (%). The regression line fitted well with the data with R2 values of 0.9840 (Model 1-COD), 0.9477 (Model 1-AN), 0.9988 (Model 2-COD) and 0.9990 (Model 2-AN). The lack of fit test gives the highest value of Sum of Squares equal to 9494.91 (Model 1- COD), 9701.68 (Model 1-AN), 23786.55 (Model 2-COD) and 13357.02 (Model 2-AN), with probability F values less than 0.05 showing significant models. The optimum conditions were established corresponding to the percentage of COD and AN removal obtained were 95.1% and 96.3%, accordingly at the optimum temperature 25°C at the treatment time of 24 h, meanwhile 0.25% of mycelial pellet with 76.0% and 78.4% COD and AN removal, respectively. The high performance achieved demonstrates that the mycoremediation of G. lucidum is highly potential as part of the wastewater treatment system in treating domestic wastewater of high organic loadings.


Author(s):  
Donwichai Sinthuchai ◽  
Suwanna Kitpati Boontanon ◽  
Pitchaya Piyaviriyakul ◽  
Narin Boontanon ◽  
Ranjna Jindal ◽  
...  

Abstract Excessive and inappropriate use of antibiotics contributes to the spread of antibiotic resistance in the environment, especially in low- to middle-income countries. This study investigated the occurrence, relative abundance, and fate of eight antibiotics at each treatment stage in four domestic and four hospital wastewater treatment plants (dWWTPs and hWWTPs, respectively), as well as mass loadings into the receiving water environments in Bangkok, Thailand. Samples were prepared by solid-phase extraction and analyzed by high-performance liquid chromatography–tandem mass spectrometry. Antibiotic concentrations were higher in hWWTPs than dWWTPs; approximately 60 times for influents and 10 times for effluents. Ciprofloxacin concentration increased in most dWWTPs, especially in the aeration unit and return sludge, suggesting that it predominantly occurred in the solid phase. Sulfamethoxazole predominantly occurred in the dissolved form, which is more difficult to degrade, and exhibited high concentrations in effluent. Moreover, antibiotic pollutant loadings were approximately 30–3,530 times higher from dWWTPs than from hWWTPs due to higher daily discharges from the domestic sector. These plants are a major point source of antibiotic residue release to aquatic environments; thus, their efficiency should be improved by incorporating advanced treatment processes to ensure effective removal of antibiotics.


Sign in / Sign up

Export Citation Format

Share Document