Determinants of bone mineral density, bone mineral content, and body composition in a cohort of healthy children: influence of sex, age, puberty, and physical activity

2011 ◽  
Vol 32 (9) ◽  
pp. 2737-2743 ◽  
Author(s):  
Emanuele Ausili ◽  
Donato Rigante ◽  
Elio Salvaggio ◽  
Benedetta Focarelli ◽  
Claudia Rendeli ◽  
...  
2007 ◽  
Vol 19 (4) ◽  
pp. 444-458 ◽  
Author(s):  
Miia Suuriniemi ◽  
Harri Suominen ◽  
Anitta Mahonen ◽  
Markku Alén ◽  
Sulin Cheng

This follow-up study confirms our previous findings that the ER-α PvuII polymorphism (Pp) modulates the association between exercise and bone mass. The differences in bone properties of girls with consistently low physical activity (LLPA) and consistently high physical activity (HHPA) were evident only in those bearing the heterozygote ER-α genotype (Pp). In particular, areal bone mineral density of the total femur, bone mineral content and areal bone mineral density of the femoral neck, and bone mineral content and cortical thickness of the tibia shaft were significantly (p < .05) lower in the Pp girls with LLPA than in their HHPA counterparts. These findings might partly explain the genetic basis of human variation associated with exercise training.


2013 ◽  
Author(s):  
N Hangartner Thomas ◽  
F Short David ◽  
Gilsanz Vicente ◽  
J Kalkwarf Heidi ◽  
M Lappe Joan ◽  
...  

1996 ◽  
Vol 82 (1) ◽  
pp. 65-67 ◽  
Author(s):  
Sandro Barni ◽  
Paolo Lissoni ◽  
Gabriele Tancini ◽  
Antonio Ardizzoia ◽  
Marina Cazzaniga

In this study, the authors have analyzed the possible effects of one-year adjuvant treatment with tamoxifen on bone mineral density in postmenopausal breast cancer women. Bone mineral content was studied by photon absorptiometry (I-125), whereas bone balance was analyzed indirectly by serum PTH, osteocalcin, calcitonin, calcium and alkaline phosphatase levels. Bone mineral content and serum bone-related substances were measured before starting treatment and after one year. Results were analyzed using Student's t test for paired data. No difference was found between the two measurements for bone mineral content, PTH, calcitonin, calcium and alkaline phosphatase levels. Measurements at entry and after one year of treatment showed a statistically significant difference ( P < 0.001) only for osteocalcin. In accordance with other authors, we can conclude that treatment with tamoxifen does not cause an increase in menopausal bone resorption. The finding that osteocalcin levels decreased after one year of therapy with tamoxifen is interesting, but further studies are necessary to clarify the role of such levels in predicting a turnover of bone balance towards osteoblastic activity.


2018 ◽  
Vol 3 (4) ◽  
pp. 62
Author(s):  
Jose Antonio ◽  
Anya Ellerbroek ◽  
Cassandra Carson

The effects of long-term high-protein consumption (i.e., >2.2 g/kg/day) are unclear as it relates to bone mineral content. Thus, the primary endpoint of this investigation was to determine if consuming a high-protein diet for one year affected various parameters of body composition in exercise-trained women. This investigation is a follow-up to a prior 6-month study. Subjects were instructed to consume a high-protein diet (>2.2 g/kg/day) for one year. Body composition was assessed via dual-energy X-ray absorptiometry (DXA). Subjects were instructed to keep a food diary (i.e., log their food ~three days per week for a year) via the mobile app MyFitnessPal®. Furthermore, a subset of subjects had their blood analyzed (i.e., basic metabolic panel). Subjects consumed a high-protein diet for one year (mean ± SD: 2.3 ± 1.1 grams per kilogram body weight daily [g/kg/day]). There were no significant changes for any measure of body composition over the course of the year (i.e., body weight, fat mass, lean body mass, percent fat, whole body bone mineral content, whole body T-score, whole body bone mineral density, lumbar bone mineral content, lumbar bone mineral density and lumbar T-score). In addition, we found no adverse effects on kidney function. Based on this 1-year within-subjects investigation, it is evident that a diet high in protein has no adverse effects on bone mineral density or kidney function.


2011 ◽  
Vol 78 (6) ◽  
pp. 616-618 ◽  
Author(s):  
Katarzyna Wesolowska ◽  
Bozena Czarkowska-Paczek ◽  
Jerzy Przedlacki ◽  
Jacek Przybylski

Sign in / Sign up

Export Citation Format

Share Document