Deep learning with convolutional neural network in the assessment of breast cancer molecular subtypes based on US images: a multicenter retrospective study

Author(s):  
Meng Jiang ◽  
Di Zhang ◽  
Shi-Chu Tang ◽  
Xiao-Mao Luo ◽  
Zhi-Rui Chuan ◽  
...  
2019 ◽  
Vol 11 (2) ◽  
pp. 43
Author(s):  
Samuel Aji Sena ◽  
Panca Mudjirahardjo ◽  
Sholeh Hadi Pramono

This research presents a breast cancer detection system using deep learning method. Breast cancer detection in a large slide of biopsy image is a hard task because it needs manual observation by a pathologist to find the malignant region. The deep learning model used in this research is made up of multiple layers of the residual convolutional neural network, and instead of using another type of classifier, a multilayer neural network was used as the classifier and stacked together and trained using end-to-end training approach. The system is trained using invasive ductal carcinoma dataset from the Hospital of the University of Pennsylvania and The Cancer Institute of New Jersey. From this dataset, 80% and 20% were randomly sampled and used as training and testing data respectively. Training a neural network on an imbalanced dataset is quite challenging. Weighted loss function was used as the objective function to tackle this problem. We achieve 78.26% and 78.03% for Recall and F1-Score metrics, respectively which are an improvement compared to the previous approach.


2021 ◽  
Author(s):  
Deepa B G ◽  
S. Senthil

Abstract Breast Cancer (BC) is the common type of cancer found in women which is caused due to the abnormal growth of cells in the breast. An early BC detection helps to increase the survival rate of the patient and 80% BC type was Invasive Ductal Carcinoma (IDC) .In this work, a deep learning-based IDC prediction model is proposed with multiple classifiers and CNN (Convolutional Neural Network). The developed deep learning method used a sequential Keras model like conv2D, Maxpooling2D, Dropout, Flatten and Dense. The multiple classifiers are LR (Logistic Regression), RF (Random Forest), K-NN (K-Nearest Neighbors), SVM (Support Vector Machine), Linear SVC, GNB (Gaussian NB) and DT (Decision Tree). The CNN model generated by using SkLearn, Keras and Tensor flow libraries, and results are organized by MatPlot libraries. At the classification stage, a helper function was defined, and Google Colab online browser platform used for developing the proposed model. The performance is analysed in terms of Accuracy, Precision, Recall, F1-score and Support.


10.2196/24762 ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. e24762
Author(s):  
Hyun-Lim Yang ◽  
Chul-Woo Jung ◽  
Seong Mi Yang ◽  
Min-Soo Kim ◽  
Sungho Shim ◽  
...  

Background Arterial pressure-based cardiac output (APCO) is a less invasive method for estimating cardiac output without concerns about complications from the pulmonary artery catheter (PAC). However, inaccuracies of currently available APCO devices have been reported. Improvements to the algorithm by researchers are impossible, as only a subset of the algorithm has been released. Objective In this study, an open-source algorithm was developed and validated using a convolutional neural network and a transfer learning technique. Methods A retrospective study was performed using data from a prospective cohort registry of intraoperative bio-signal data from a university hospital. The convolutional neural network model was trained using the arterial pressure waveform as input and the stroke volume (SV) value as the output. The model parameters were pretrained using the SV values from a commercial APCO device (Vigileo or EV1000 with the FloTrac algorithm) and adjusted with a transfer learning technique using SV values from the PAC. The performance of the model was evaluated using absolute error for the PAC on the testing dataset from separate periods. Finally, we compared the performance of the deep learning model and the FloTrac with the SV values from the PAC. Results A total of 2057 surgical cases (1958 training and 99 testing cases) were used in the registry. In the deep learning model, the absolute errors of SV were 14.5 (SD 13.4) mL (10.2 [SD 8.4] mL in cardiac surgery and 17.4 [SD 15.3] mL in liver transplantation). Compared with FloTrac, the absolute errors of the deep learning model were significantly smaller (16.5 [SD 15.4] and 18.3 [SD 15.1], P<.001). Conclusions The deep learning–based APCO algorithm showed better performance than the commercial APCO device. Further improvement of the algorithm developed in this study may be helpful for estimating cardiac output accurately in clinical practice and optimizing high-risk patient care.


2021 ◽  
Author(s):  
Golnaz Moallem ◽  
Adity A. Pore ◽  
Anirudh Gangadhar ◽  
Hamed Sari-Sarraf ◽  
Siva A Vanapalli

Significance: Circulating tumor cells (CTCs) are important biomarkers for cancer management. Isolated CTCs from blood are stained to detect and enumerate CTCs. However, the staining process is laborious and moreover makes CTCs unsuitable for drug testing and molecular characterization. Aim: The goal is to develop and test deep learning (DL) approaches to detect unstained breast cancer cells in bright field microscopy images that contain white blood cells (WBCs). Approach: We tested two convolutional neural network (CNN) approaches. The first approach allows investigation of the prominent features extracted by CNN to discriminate cancer cells from WBCs. The second approach is based on Faster Region-based Convolutional Neural Network (Faster R-CNN). Results: Both approaches detected cancer cells with high sensitivity and specificity with the Faster R-CNN being more efficient and suitable for deployment. The distinctive feature used by the CNN used to discriminate is cell size, however, in the absence of size difference, the CNN was found to be capable of learning other features. The Faster R-CNN was found to be robust with respect to intensity and contrast image transformations. Conclusions: CNN-based deep learning approaches could be potentially applied to detect patient-derived CTCs from images of blood samples.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256500
Author(s):  
Maleika Heenaye-Mamode Khan ◽  
Nazmeen Boodoo-Jahangeer ◽  
Wasiimah Dullull ◽  
Shaista Nathire ◽  
Xiaohong Gao ◽  
...  

The real cause of breast cancer is very challenging to determine and therefore early detection of the disease is necessary for reducing the death rate due to risks of breast cancer. Early detection of cancer boosts increasing the survival chance up to 8%. Primarily, breast images emanating from mammograms, X-Rays or MRI are analyzed by radiologists to detect abnormalities. However, even experienced radiologists face problems in identifying features like micro-calcifications, lumps and masses, leading to high false positive and high false negative. Recent advancement in image processing and deep learning create some hopes in devising more enhanced applications that can be used for the early detection of breast cancer. In this work, we have developed a Deep Convolutional Neural Network (CNN) to segment and classify the various types of breast abnormalities, such as calcifications, masses, asymmetry and carcinomas, unlike existing research work, which mainly classified the cancer into benign and malignant, leading to improved disease management. Firstly, a transfer learning was carried out on our dataset using the pre-trained model ResNet50. Along similar lines, we have developed an enhanced deep learning model, in which learning rate is considered as one of the most important attributes while training the neural network. The learning rate is set adaptively in our proposed model based on changes in error curves during the learning process involved. The proposed deep learning model has achieved a performance of 88% in the classification of these four types of breast cancer abnormalities such as, masses, calcifications, carcinomas and asymmetry mammograms.


2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Jennifer K Chukwu ◽  
Faisal B. Sani ◽  
Aliyu S. Nuhu

Breast cancer remains the primary causes of death for women and much effort has been depleted in the form of screening series for prevention. Given the exponential growth in the number of mammograms collected, computer-assisted diagnosis has become a necessity. Histopathological imaging is one of the methods for cancer diagnosis where Pathologists examine tissue cells under different microscopic standards but disagree on the final decision. In this context, the use of automatic image processing techniques resulting from deep learning denotes a promising avenue for assisting in the diagnosis of breast cancer. In this paper, an android software for breast cancer classification using deep learning approach based on a Convolutional Neural Network (CNN) was developed. The software aims to classify the breast tumors to benign or malignant. Experimental results on histopathological images using the BreakHis dataset shows that the DenseNet CNN model achieved high processing performances with 96% of accuracy in the breast cancer classification task when compared with state-of-the-art modelsKeywords— Breast cancer classification, Convolutional Neural Network (CNN), deep learning, DenseNet, histopathological images  


Sign in / Sign up

Export Citation Format

Share Document