scholarly journals A compact and mobile hybrid C-arm scanner for simultaneous nuclear and fluoroscopic image guidance

Author(s):  
Martijn M. A. Dietze ◽  
Britt Kunnen ◽  
Frank Brontsema ◽  
Pascal Ramaekers ◽  
Casper Beijst ◽  
...  

Abstract Purpose This study evaluates the performance of a mobile and compact hybrid C-arm scanner (referred to as IXSI) that is capable of simultaneous acquisition of 2D fluoroscopic and nuclear projections and 3D image reconstruction in the intervention room. Results The impact of slightly misaligning the IXSI modalities (in an off-focus geometry) was investigated for the reduction of the fluoroscopic and nuclear interference. The 2D and 3D nuclear image quality of IXSI was compared with a clinical SPECT/CT scanner by determining the spatial resolution and sensitivity of point sources and by performing a quantitative analysis of the reconstructed NEMA image quality phantom. The 2D and 3D fluoroscopic image of IXSI was compared with a clinical CBCT scanner by visualizing the Fluorad A+D image quality phantom and by visualizing a reconstructed liver nodule phantom. Finally, the feasibility of dynamic simultaneous nuclear and fluoroscopic imaging was demonstrated by injecting an anthropomorphic phantom with a mixture of iodinated contrast and 99mTc. Conclusion Due to the divergent innovative hybrid design of IXSI, concessions were made to the nuclear and fluoroscopic image qualities. Nevertheless, IXSI realizes unique image guidance that may be beneficial for several types of procedures. Key Points • IXSI can perform time-resolved planar (2D) simultaneous fluoroscopic and nuclear imaging. • IXSI can perform SPECT/CBCT imaging (3D) inside the intervention room.

2021 ◽  
Vol 11 (5) ◽  
pp. 2047
Author(s):  
Nor Azura Muhammad ◽  
Zunaide Kayun ◽  
Hasyma Abu Hassan ◽  
Jeannie Hsiu Ding Wong ◽  
Kwan Hoong Ng ◽  
...  

The aim of this study is to investigate the impact of CT acquisition parameter setting on organ dose and its influence on image quality metrics in pediatric phantom during CT examination. The study was performed on 64-slice multidetector CT scanner (MDCT) Siemens Definition AS (Siemens Sector Healthcare, Forchheim, Germany) using various CT CAP protocols (P1–P9). Tube potential for P1, P2, and P3 protocols were fixed at 100 kVp while P4, P5, and P6 were fixed at 80 kVp with used of various reference noise values. P7, P8, and P9 were the modification of P1 with changes on slice collimation, pitch factor, and tube current modulation (TCM), respectively. TLD-100 chips were inserted into the phantom slab number 7, 9, 10, 12, 13, and 14 to represent thyroid, lung, liver, stomach, gonads, and skin, respectively. The image quality metrics, signal to noise ratio (SNR) and contrast to noise ratio (CNR) values were obtained from the CT console. As a result, this study indicates a potential reduction in the absorbed dose up to 20% to 50% along with reducing tube voltage, tube current, and increasing the slice collimation. There is no significant difference (p > 0.05) observed between the protocols and image metrics.


Author(s):  
Yang-Ting Hsu ◽  
Jo-Chi Jao

Radiologic technologists face various types of patients during multi-detector computed tomography (CT) examinations. In emergency departments, it is common to have patients who cannot follow instructions for the examinations. The asymmetric axial view of the head CT might affect the correctness of the clinician’s diagnosis. This study aimed to assess the impact of head positioning on the image quality of head CT using two phantoms. All scans were performed on a 16-slice CT scanner. In the control group, the tilted angle of the phantoms was 0[Formula: see text], and no multiplanar reconstruction (MPR) was performed. In the experimental groups, the tilted angles of the phantoms were 5[Formula: see text], 10[Formula: see text] and 15[Formula: see text], respectively, and MPR was performed afterwards. The results showed that if the head was tilted during the head CT examinations, image asymmetry and artifacts appeared without MPR. After MPR, one phantom showed that there were significant differences and the other phantom showed no significant differences quantitatively in image symmetry and artifacts between experimental groups and the control group, while both phantoms showed no significant differences qualitatively in image symmetry and artifacts between experimental groups and the control group. Although MPR can correct the image asymmetry and artifacts caused by tilted head positioning to some extent, it consumes time. Therefore, technologists should position the head as exactly as possible when performing head CT examinations.


2013 ◽  
Vol 118 (5) ◽  
pp. 1000-1002 ◽  
Author(s):  
Naci Kocer ◽  
Osman Kizilkilic ◽  
Drazenko Babic ◽  
Danny Ruijters ◽  
Civan Islak

Advanced transluminal neurovascular navigation is an indispensable image-guided method that allows for real-time navigation of endovascular material in critical neurovascular settings. Thus far, it has been primarily based on 2D and 3D angiography, burdening the patient with a relatively high level of iodinated contrast. However, in the patients with renal insufficiency, this method is no longer tolerable due to the contrast load. The authors present a novel image guidance technique based on periprocedural fluoroscopic images fused with a preinterventionally acquired MRI data set. The technique is illustrated in a case in which the fused image combination was used for endovascular treatment of a giant cerebral aneurysm.


2018 ◽  
Vol 4 (Supplement 2) ◽  
pp. 68s-68s
Author(s):  
B. Ali ◽  
A. Afshan ◽  
M.B. Kakakhel

Background: In PET imaging both quantitative and qualitative interpretations are used. Qualitative and quantitative interpretations depend upon PET/CT image quality that along with many biologic factors strongly depends upon image reconstruction parameters. Aim: The objective of this experimental work was to study the impact of one of the key reconstruction parameter, i.e., number of reconstruction iteration, on standardized uptake value and image quality of PET/CT scan. Methods: Images of NEMA IEC Image Quality Phantom were acquired in list mode for 10 mins on Discovery STE PET/CT scanner, using tumor to background ratio of 4:1 and 18F-FDG as radiotracer. List mode data were further transformed into data sets of varying acquisition time (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 mins) per bed position. Transformed data set of 5.0 mins were used to study the impact of varying number of iterations (2, 3, 4, 5, 7, 10, 15, 20) using OSEM approach of iterative reconstruction. Standardized uptake value (SUV) and underestimation in SUV were calculated as quantitative measures, while hot lesion contrast, cold lesion contrast and background variability were calculated as qualitative measures. Results: Standardized uptake value, hot and cold lesion contrast, image spatial resolution and background variability showed increasing trend with increase in reconstruction iterations. Maximum increase of 20.25%, 16.33%, 9.79% and 6.88% was observed in SUV for 10 mm, 13 mm, 17 mm and 22 mm lesions as number of iteration change from 2 to 3. Smallest and the largest diameter lesions showed maximum underestimations of 54.67% and 8.20% at 2 iterations respectively. Percentage hot lesion contrast showed rapid increase as the number of iteration change from 2 to 7 and increased slowly afterward. Background variability range from 4.4% to 6.4%, 4.1%–5.7%, 3.6%–4.6%, 3%–3.8%, 2.7%–3.2%, 2.4%–2.7% for 10.0 mm, 13.0 mm, 17.0 mm, 22.0 mm, 28.0 mm and 37.0 mm sphere respectively. Conclusion: Optimized reconstruction parameters for routine clinical studies 3 iterations with image matrix size of 128 × 128 with filters FWHM of 6 mm and for high resolution studies 3 iterations image matrix size of 256×256 with filters FWHM of 6 mm.


Author(s):  
E. K. Webb ◽  
S. Robson ◽  
L. MacDonald ◽  
D. Garside ◽  
R. Evans

Spectral and 3D imaging techniques are used for museum imaging and cultural heritage documentation providing complementary information to aid in documenting the condition, informing the care, and increasing our understanding of objects. Specialised devices for spectral and 3D imaging may not be accessible for many heritage institutions, due to cost and complexity, and the modification of a consumer digital camera presents the potential of an accessible scientific tool for 2D and 3D spectral imaging. Consumer digital cameras are optimised for visible light, colour photography, but the underlying sensor is inherently sensitive to near ultraviolet, visible, and near infrared radiation. This research presents the characterisation of a modified camera to investigate the impact of the modification on the spectroradiometric and geometric image quality with the intention of the device being used as a scientific tool for cultural heritage documentation. The characterisation includes the assessment of 2D image quality looking at visual noise, sharpness, and sampling efficiency using the target and software associated with the Federal Agencies Digitization Guidelines Initiative. Results suggest that these modifications give rise to discrepancies in computed surface geometries of the order of ± 0.1 mm for small to medium sized objects used in the study and recorded in the round (maximum dimension 20 cm). Measuring the spectral response quantifies the modified camera as a scientific device for more accurate measurements and provides indications of wavelengths that could improve documentation based on sensitivity. The modification of a consumer digital camera provides a less expensive, high-resolution option for 2D and 3D spectral imaging.


2021 ◽  
Vol 31 (Supplement_2) ◽  
Author(s):  
Rafaela Meneses ◽  
Bruno Dias ◽  
Andrea Pimenta ◽  
Graciano Paulo ◽  
Joana Santos

Abstract Background The purpose of this study is to analyse paediatric head Computed Tomography (CT) examination dose values, establish local Diagnostic Reference Levels (DRL), and perform objective image quality assessment per categorisation. Methods A total of 100 paediatric head CT examinations divided into 5 paediatric age categorisations were retrospectively selected: 0–3months, 3months to 1 year, 1 to 6 years, and more than 6 years. Computed Tomography Dose Index (CTDIvol - mGy) and Dose Lenght Product (DLP – mGy.cm), acquisition mode and CT scanner were collected per examination. Examinations with lower and higher dose values per categorisation were selected, and 10 Regions of Interest (ROI’s) were defined on supra and infra tentorial regions in order to access image quality, based on signal and noise values. Local DRLs were compare with the literature and with previous studies of this centre. Results The obtained DLP values were 580, 570, 700, 754 mGy.cm, for the categorisation of 0–3 months, 3 months to 1 year, 1 to 6 years, and more than 6 years, respectively. No significant differences were founded in dose values and image quality, per paediatric categorisation. Conclusions Despise previous local DRLs were defined using a different age categorisation, some paediatric aged categorisation revealed an increase of the dose values. These results must be related with the acquisition of a new CT scanner. Optimisation process is on-going and new protocols are being define.


Author(s):  
Nigar Salimova ◽  
Jan B. Hinrichs ◽  
Marcel Gutberlet ◽  
Bernhard C. Meyer ◽  
Frank K. Wacker ◽  
...  

Abstract Objectives To evaluate the impact of the reconstructed field-of-view (FOV) on image quality in computed-tomography angiography (CTA) of the lower extremities. Methods A total of 100 CTA examinations of the lower extremities were acquired on a 2 × 192-slice multidetector CT (MDCT) scanner. Three different datasets were reconstructed covering both legs (standard FOV size) as well as each leg separately (reduced FOV size). The subjective image quality was evaluated for the different vessel segments (femoral, popliteal, crural, pedal) by three readers using a semi-quantitative Likert scale. Additionally, objective image quality was assessed using an automated image quality metric on a per-slice basis. Results The subjective assessment of the image quality showed an almost perfect interrater agreement. The image quality of the small FOV datasets was rated significantly higher as compared to the large datasets for all patients and vessel segments (p < 0.05) with a tendency towards a higher effect in smaller vessels. The difference of the mean scores between the group with the large FOV and small FOV was 0.68 for the femoral level, 0.83 for the popliteal level, 1.12 for the crural level, and 1.08 for the pedal level. The objective image quality metric also demonstrated a significant improvement of image quality in the small FOV datasets. Conclusions Side-separated reconstruction of each leg in CTA of the lower extremities using a small reconstruction FOV significantly improves image quality as compared to a standard reconstruction with a large FOV covering both legs. Key Points • In CT angiography of the lower legs, the side-separated reconstruction of each leg using a small field-of-views improves image quality as compared to a standard reconstruction covering both legs. • The side-separated reconstruction can be readily implemented at every commercially available CT scanner. • There is no need for additional hardware or software and no additional burden to the patient.


2014 ◽  
Vol 75 (S 02) ◽  
Author(s):  
Gerlig Widmann ◽  
P. Schullian ◽  
R. Hoermann ◽  
E. Gassner ◽  
H. Riechelmann ◽  
...  

2021 ◽  
Vol 52 (S1) ◽  
pp. 643-646
Author(s):  
Yang Guobo ◽  
Qiu Haijun ◽  
Huang Weiyun ◽  
Yang Yuqing ◽  
Long Yue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document