Three-dimensional ZnO nanorods growth on ZnO nanorods seed layer for high responsivity UV photodetector

2019 ◽  
Vol 125 (12) ◽  
Author(s):  
S. M. A. Rastialhosseini ◽  
A. Khayatian ◽  
R. Shariatzadeh ◽  
M. Almasi Kashi
2010 ◽  
Vol 1258 ◽  
Author(s):  
Xianglin Li ◽  
Chuanwei Cheng ◽  
Hongjin Fan

AbstractAtomic layer deposition (ALD) ZnO film as seed layer for growing aligned ZnO nanorods arrays is demonstrated. The effects of the deposition temperature and film thickness to the morphology of the ZnO nanorods are studied. The ALD is found to have its advantage over the conventional dip-coating method when being applied to three-dimensional (3D) substrates, as exemplified by the macroporous Si adn CNT arrays. As one example, the CNT-ZnO 3D hybrid nanostructures are obtained which might be useful for energy-related applications.


RSC Advances ◽  
2021 ◽  
Vol 11 (29) ◽  
pp. 17538-17546
Author(s):  
Dongwan Kim ◽  
Jae-Young Leem

A transparent and flexible ultraviolet (UV) photodetector based on ZnO nanorods grown onto the thermal dissipation annealed ZnO seed layer exhibited high photosensitivity, photoresponsivity, and photocurrent stability without substrate deformation.


2011 ◽  
Vol 10 (04n05) ◽  
pp. 845-849
Author(s):  
GAURAV SHUKLA ◽  
ALIKA KHARE

Hydrothermal growth of highly c-axis oriented ZnO nanorods with high aspect ratio on pulsed laser deposited ZnO seed layer is reported. Effect of pre-heating time, growth time and seed layer on the structural, morphological and optical properties of ZnO nanorods is presented. The possible growth mechanism for ZnO nanorods is also discussed.


RSC Advances ◽  
2016 ◽  
Vol 6 (3) ◽  
pp. 2112-2118 ◽  
Author(s):  
Luís F. Da Silva ◽  
Osmando F. Lopes ◽  
Ariadne C. Catto ◽  
Waldir Avansi ◽  
Maria I. B. Bernardi ◽  
...  

The ZnO–SnO2 heterojunction catalyst was prepared via a hydrothermal treatment route. The heterojunction exhibited a superior photocatalytic performance in comparison to SnO2 and ZnO, attributed to the good charge separation.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6124
Author(s):  
Junhyuk Yoo ◽  
Uijin Jung ◽  
Bomseumin Jung ◽  
Wenhu Shen ◽  
Jinsub Park

Although ZnO nanostructure-based photodetectors feature a well-established system, they still present difficulties when being used in practical situations due to their slow response time. In this study, we report on how forming an amorphous SnO2 (a-SnO2) shell layer on ZnO nanorods (NRs) enhances the photoresponse speed of a ZnO-based UV photodetector (UV PD). Our suggested UV PD, consisting of a ZnO/a-SnO2 NRs core–shell structure, shows a rise time that is 26 times faster than a UV PD with bare ZnO NRs under 365 nm UV irradiation. In addition, the light responsivity of the ZnO/SnO2 NRs PD simultaneously increases by 3.1 times, which can be attributed to the passivation effects of the coated a-SnO2 shell layer. With a wide bandgap (~4.5 eV), the a-SnO2 shell layer can successfully suppress the oxygen-mediated process on the ZnO NRs surface, improving the photoresponse properties. Therefore, with a fast photoresponse speed and a low fabrication temperature, our as-synthesized, a-SnO2-coated ZnO core–shell structure qualifies as a candidate for ZnO-based PDs.


RSC Advances ◽  
2018 ◽  
Vol 8 (58) ◽  
pp. 33174-33179 ◽  
Author(s):  
Xiaoli Peng ◽  
Weihao Wang ◽  
Yiyu Zeng ◽  
Xinhua Pan ◽  
Zhizhen Ye ◽  
...  

A flexible UV detector exhibits high performance. The photoresponse of the device under different upward angles (tensile strain) and downward angles (compressive strain) were studied. A 163% change in responsivity was obtained when the downward angle reached 60°.


Sign in / Sign up

Export Citation Format

Share Document