Boosted anchor quality factor of a thin-film aluminum nitride-on-silicon length extensional mode MEMS resonator using phononic crystal strip

2021 ◽  
Vol 127 (10) ◽  
Author(s):  
Thi Dep Ha
Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1130
Author(s):  
Jiacheng Liu ◽  
Temesgen Bailie Workie ◽  
Ting Wu ◽  
Zhaohui Wu ◽  
Keyuan Gong ◽  
...  

Thin-film piezoelectric-on-silicon (TPoS) microelectromechanical (MEMS) resonators are required to have high Q-factor to offer satisfactory results in their application areas, such as oscillator, filter, and sensors. This paper proposed a phononic crystal (PnC)-reflector composite structure to improve the Q factor of TPoS resonators. A one-dimensional phononic crystal is designed and deployed on the tether aiming to suppress the acoustic leakage loss as the acoustic wave with frequency in the range of the PnC is not able to propagate through it, and a reflector is fixed on the anchoring boundaries to reflect the acoustic wave that lefts from the effect of the PnC. Several 10 MHz TPoS resonators are fabricated and tested from which the Q-factor of the proposed 10 MHz TPoS resonator which has PnC-reflector composite structure on the tether and anchoring boundaries achieved offers a loaded Q-factor of 4682 which is about a threefold improvement compared to that of the conventional resonator which is about 1570.


2008 ◽  
Author(s):  
A. Kabulski ◽  
V. R. Pagán ◽  
D. Cortes ◽  
R. Burda ◽  
O. M. Mukdadi ◽  
...  

2014 ◽  
Vol 116 (3) ◽  
pp. 034102 ◽  
Author(s):  
C. Stoeckel ◽  
C. Kaufmann ◽  
R. Hahn ◽  
R. Schulze ◽  
D. Billep ◽  
...  

Author(s):  
Ralf Lucklum ◽  
Mikhail Zubtsov ◽  
Simon Villa Arango

We report on first steps towards a phononic crystal sensor for biomedical applications. Phononic crystals and metamaterials allow for unprecedented control of sound propagation. The classical ultrasonic sensors, acoustic microsensors and MEMS resonator sensors face severe limitations when applying them to small volume liquid analytes. Phononic crystal sensors are a new concept following the route of photonic crystal sensors. Basically, the material of interest, here a liquid analyte confined in a cavity of a phononic crystal having a solid matrix constitutes one component of the phononic crystal. In an application as chemical sensor the value of interest, let’s say the concentration of a toxic compound in liquid, is related to acoustic properties of the liquid in the cavity. A change in the concentration causes measurable changes in the properties of the phononic crystal. Transmission or reflection coefficients are appropriate parameters for measurement. Specifically, a resonance induced well separated transmission peak within the band gap is the most favorable feature. The sensor scheme therefore relies on the determination of the frequency of maximum transmission as measure of concentration. Promising applications like biomedical sensors, point-of-care diagnostics or fast screening introduce further engineering challenges, specifically when considering a disposable element containing the analyte. The three key challenges are the strong restriction coming from limitations to approved materials for the analyte container, geometric dimensions in the mm-range common in hospital or point-of-care environment and acoustic coupling between sensor platform and analyte container.


1998 ◽  
Vol 61 (1) ◽  
pp. 107-118 ◽  
Author(s):  
N.R. Moody ◽  
D. Medlin ◽  
D. Boehme ◽  
D.P. Norwood

Sign in / Sign up

Export Citation Format

Share Document