Development of a cw-laser-based cavity-ringdown sensor aboard a spacecraft for trace air constituents

2002 ◽  
Vol 75 (2-3) ◽  
pp. 255-260 ◽  
Author(s):  
A.R. Awtry ◽  
J.H. Miller
Keyword(s):  
1981 ◽  
Vol 4 ◽  
Author(s):  
T. J. Stultz ◽  
J. F. Gibbons

ABSTRACTStructural and electrical characterization of laser recrystallized LPCVD silicon films on amorphous substrates using a shaped cw laser beam have been performed. In comparing the results to data obtained using a circular beam, it was found that a significant increase in grain size can be achieved and that the surface morphology of the shaped beam recrystallized material was much smoother. It was also found that whereas circular beam recrystallized material has a random grain structure, shaped beam material is highly oriented with a <100> texture. Finally the electrical characteristics of the recrystallized film were very good when measured in directions parallel to the grain boundaries.


Author(s):  
L.S. Koh ◽  
H. Marks ◽  
L.K. Ross ◽  
C.M. Chua ◽  
J.C.H. Phang

Abstract A Laser Timing Probe (LTP) system which uses a noninvasive 1.3 µm continuous wave (CW) laser with frequency mapping and single point measurement capabilities is described. The frequency mapping modes facilitate the localization of signal maxima for subsequent single point measurements. Measurements of waveforms with long delays and 50 ps response time from NMOS and PMOS transistors are also shown.


Author(s):  
Hiroaki Nakao ◽  
Akira Shirakawa ◽  
Ken-ichi Ueda ◽  
Hideki Yagi ◽  
Takagimi Yanagitani

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1448
Author(s):  
Nobukazu Kameyama ◽  
Hiroki Yoshida ◽  
Hitoshi Fukagawa ◽  
Kotaro Yamada ◽  
Mitsutaka Fukuda

Carbon dioxide (CO2) laser is widely used in commercial and industrial fields to process various materials including polymers, most of which have high absorptivity in infrared spectrum. Thin-film processing by the continuous wave (CW) laser is difficult since polymers are deformed and damaged by the residual heat. We developed the new method to make polypropylene (PP) and polystyrene (PS) sheets thin. The sheets are pressed to a Cu base by extracting air between the sheets and the base during laser processing. It realizes to cut the sheets to around 50 µm thick with less heat effects on the backside which are inevitable for thermal processing using the CW laser. It is considered that the boundary between the sheets and the base is in thermal equilibrium and the base prevents the sheets from deforming to support the backside. The method is applicable to practical use since it does not need any complex controls and is easy to install to an existing equipment with a minor change of the stage.


Author(s):  
Ruixue Wang ◽  
Benrui Zhao ◽  
Baoquan Yao ◽  
Xiaoming Duan ◽  
Tongyu Dai

Sign in / Sign up

Export Citation Format

Share Document