circular beam
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 11)

H-INDEX

12
(FIVE YEARS 3)

Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6207
Author(s):  
John G. Eley ◽  
Catherine B. Haga ◽  
Asaf Keller ◽  
Ellis M. Lazenby ◽  
Charles Raver ◽  
...  

The purpose of this work was to investigate whether minibeam therapy with heavy ions might offer improvements of the therapeutic ratio for the treatment of human brain cancers. To assess neurotoxicity, we irradiated normal juvenile rats using 120 MeV lithium-7 ions at an absorbed integral dose of 20 Gy. Beams were configured either as a solid parallel circular beam or as an array of planar parallel minibeams having 300-micron width and 1-mm center-to-center spacing within a circular array. We followed animals for 6 months after treatment and utilized behavioral testing and immunohistochemical studies to investigate the resulting cognitive impairment and chronic pathologic changes. We found both solid-beam therapy and minibeam therapy to result in cognitive impairment compared with sham controls, with no apparent reduction in neurotoxicity using heavy ion minibeams instead of solid beams under the conditions of this study.


2021 ◽  
Vol 318 ◽  
pp. 03013
Author(s):  
A. A. Talal ◽  
W. H. Khaleel ◽  
B. N. Hassan ◽  
K. S. Abdul-Razzaq ◽  
A. A. Dawood

A parametric study of twenty-five reinforced concrete ring deep beams using finite element analysis is presented in this study. This paper took into account the kind of loading (partial and complete), the diameter, depth, and width of the ring beam, as well as the NO. of supports. When compared to equivalent concentrated central loading, acting a central partial distributed loading of 25-100 percent of the length of span increased capacity of load by about 3-80 percent while decreasing max. deflection and moments of torsion by about 4-14 percent and 1-9 percent, respectively. Decreases in load capacity of about 10-33 percent were observed when beam diameter was increased by 20-80%, while deflection and moments of torsion increased by about 30-145 percent and 8-23 percent, respectively. When the depth of the beam was increased by 12-50 percent, the capacity of load and moments of torsion increased by about 15-61 percent, while deflection reduced by about 8-21 percent. When the circular beam width was increased by 40-160 percent, the capacity of load, deflection, and moments of torsion increased by about 142-690 percent, 26-62 percent, and 137-662 percent, respectively. Finally, when the NO. of supports increased by 25-150 percent, the capacity of load increased by about 70-380 percent, while the deflection and moments of torsion decreased by about 27-71 percent and 16-72 percent, respectively.


Author(s):  
Sergei B. Filippov ◽  

By means of an asymptotic method the buckling under the uniform external pressure of the thin cylindrical shell supported by identical annular plates is analyzed. Boundary conditions on an internal parallel of the shell joined to a thin plate are obtained. At the edges of the shell the free support conditions are introduced. We seek the approximate solutions of the eigenvalue problem as a sum of slowly varying functions and edge effect integrals. On a parallel, where the plate joint with the shell, the main boundary conditions for the formulation of an eigenvalue problem of zero approximation are obtained. This problem describes also vibrations of a simply supported beam stiffened by springs. Its solution we seek as linear combinations of Krylov’s functions. It is shown, that in zero approximation it is possible to replace a narrow plate with a circular beam. At increase in width of a plate stiffness of the corresponding spring tend to a constant. It occurs because of localization plate deformations near to the internal edge of a plate. As an example the dimensionless critical pressure for the case when the shell is supported by one plate is found. The replacement of a narrow plate with a circular beam does not lead to appreciable change of the critical pressure, however for a wide plate the beam model gives the overestimated value of critical pressure.


2020 ◽  
Vol 16 (6) ◽  
pp. 155014772092177
Author(s):  
Bernard J Socha ◽  
Edward T Bednarz ◽  
Wei-Dong Zhu

The purpose of this work is to develop a new methodology that uses the minimum numbers of strain gauges, strain grids, and measurement channels to calculate the bending moment and torque in a slender circular beam under combined loading from measured strains in it. In general, each independent variable requires a minimum of one independent measurement. Two grids of a single-rosette strain gauge located at 45° and −45° from the longitudinal axis of the beam are used in conjunction with two measurement channels to gather all measurements and form a combined loading transducer. A theoretical set of equations of the new methodology is developed to minimize numbers of strain grids and measurement channels, and an experimental configuration was tested in a variety of scenarios. Calibration factors were independently developed for the bending moment and torque of the beam by separately loading it in their respective directions. These calibration factors were applied to different combined loading scenarios, where errors were found to be on average 1.6% for moment comparison and 6.7% for torque comparison.


2019 ◽  
Vol 18 (10) ◽  
pp. 2140-2144 ◽  
Author(s):  
Lei Xing ◽  
Jiajia Zhu ◽  
Qian Xu ◽  
Dandan Yan ◽  
Yongjiu Zhao
Keyword(s):  

Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1306 ◽  
Author(s):  
Feifei Zhao ◽  
Hong Bao ◽  
Song Xue ◽  
Qian Xu

For the inverse finite element method (iFEM), an inappropriate scheme of strain senor distribution would cause severe degradation of the deformation reconstruction accuracy. The robustness of the strain–displacement transfer relationship and the accuracy of reconstruction displacement are the two key factors of reconstruction accuracy. Previous research studies have been focused on single-objective optimization for the robustness of the strain–displacement transfer relationship. However, researchers found that it was difficult to reach a mutual balance between robustness and accuracy using single-objective optimization. In order to solve this problem, a bi-objective optimal model for the scheme of sensor distribution was proposed for this paper, where multi-objective particle swarm optimization (MOPSO) was employed to optimize the robustness and the accuracy. Initially, a hollow circular beam subjected to various loads was used as a case to perform the static analysis. Next, the optimization model was established and two different schemes of strain sensor were obtained correspondingly. Finally, the proposed schemes were successfully implemented in both the simulation calculation and the experiment test. It was found that the results from the proposed optimization model in this paper proved to be a promising tool for the selection of the scheme of strain sensor distribution.


Acoustics ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 295-336
Author(s):  
Andrew Hull ◽  
Daniel Perez

This paper derives an analytical model of a circular beam with a T-shaped cross section for use in the high-frequency range, defined here as approximately 1 to 50 kHz. The T-shaped cross section is composed of an outer web and an inner flange. The web in-plane motion is modeled with two-dimensional elasticity equations of motion, and the left portion and right portion of the flange are modeled separately with Timoshenko shell equations. The differential equations are solved with unknown wave propagation coefficients multiplied by Bessel and exponential spatial domain functions. These are inserted into constraint and equilibrium equations at the intersection of the web and flange and into boundary conditions at the edges of the system. Two separate cases are formulated: structural axisymmetric motion and structural non-axisymmetric motion and these results are added together for the total solution. The axisymmetric case produces 14 linear algebraic equations and the non-axisymmetric case produces 24 linear algebraic equations. These are solved to yield the wave propagation coefficients, and this gives a corresponding solution to the displacement field in the radial and tangential directions. The dynamics of the longitudinal direction are discussed but are not solved in this paper. An example problem is formulated and compared to solutions from fully elastic finite element modeling. It is shown that the accurate frequency range of this new model compares very favorably to finite element analysis up to 47 kHz. This new analytical model is about four magnitudes faster in computation time than the corresponding finite element models.


Sign in / Sign up

Export Citation Format

Share Document