Antioxidant system responses in two co-occurring green-tide algae under stress conditions

2015 ◽  
Vol 34 (1) ◽  
pp. 102-108 ◽  
Author(s):  
Ying Wang ◽  
Xinyu Zhao ◽  
Xuexi Tang
Nanoscale ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 3855-3863 ◽  
Author(s):  
Namrata Singh ◽  
Mohammed Azharuddin Savanur ◽  
Shubhi Srivastava ◽  
Patrick D'Silva ◽  
Govindasamy Mugesh

Multi-enzyme mimetic Mn3O4 nanoflowers (Mp) modulate the redox state of mammalian cells without altering the cellular antioxidant machinery under oxidative stress conditions.


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 514
Author(s):  
Naveen Naveen ◽  
Nisha Kumari ◽  
Ram Avtar ◽  
Minakshi Jattan ◽  
Sushil Ahlawat ◽  
...  

Drought stress is considered to be a major factor responsible for reduced agricultural productivity, because it is often linked to other major abiotic stresses, such as salinity and heat stress. Understanding drought-tolerance mechanisms is important for crop improvement. Moreover, under drought conditions, it is possible that growth regulators are able to protect the plants. Brassinosteroids not only play a regulatory role in plant growth, but also organize defense mechanisms against various tresses. This study aimed to evaluate the effect of brassinolide on physio-biochemical amendment in two contrasting cultivars (drought-tolerant RH 725, and drought-sensitive RH 749) of Brassica juncea under drought stress. Two foliar sprayings with brassinolide (10 and 20 mg/L) were carried out in both cultivars (RH 725 and RH 749) at two stages—i.e., flower initiation, and 50% flowering—under stress conditions. The results clearly revealed that the activities of antioxidative enzymes and non-enzymatic antioxidants (carotenoids, ascorbic acid, and proline) increased significantly in RH 725 at 50% flowering, whereas 20 mg/L of brassinolide showed the most promising response. The different oxidative stress indicators (i.e., hydrogen peroxide, malondialdehyde, and electrolyte leakage) decreased to a significant extent at 20 mg/L of brassinolide spray in RH 725 at 50% flowering. This study indicates that brassinolide intensifies the physio-biochemical attributes by improving the antioxidant system and photosynthetic efficiency in RH 725 at 50% flowering. It is assumed that enhanced production of proline, improvement of the antioxidant system, and reduction in the amount of stress indicators impart strength to the plants to combat the stress conditions.


2016 ◽  
Vol 7 (14) ◽  
pp. 20-10 ◽  
Author(s):  
Masoumeh Valavi ◽  
Hadi Sarir ◽  
Homayoun FarhangFar ◽  
Asghar Zarban ◽  
Seyyed Javad Hosseini-Vashan ◽  
...  

2021 ◽  
Vol 11 (04) ◽  
pp. 157-168
Author(s):  
Juhong Tao ◽  
Yongyan Pei ◽  
Jianyi Zhu ◽  
Qinqin Lu ◽  
Hongxia Jiang ◽  
...  

Crisis ◽  
2012 ◽  
Vol 33 (2) ◽  
pp. 106-112 ◽  
Author(s):  
Christopher M. Bloom ◽  
Shareen Holly ◽  
Adam M. P. Miller

Background: Historically, the field of self-injury has distinguished between the behaviors exhibited among individuals with a developmental disability (self-injurious behaviors; SIB) and those present within a normative population (nonsuicidal self-injury; NSSI),which typically result as a response to perceived stress. More recently, however, conclusions about NSSI have been drawn from lines of animal research aimed at examining the neurobiological mechanisms of SIB. Despite some functional similarity between SIB and NSSI, no empirical investigation has provided precedent for the application of SIB-targeted animal research as justification for pharmacological interventions in populations demonstrating NSSI. Aims: The present study examined this question directly, by simulating an animal model of SIB in rodents injected with pemoline and systematically manipulating stress conditions in order to monitor rates of self-injury. Methods: Sham controls and experimental animals injected with pemoline (200 mg/kg) were assigned to either a low stress (discriminated positive reinforcement) or high stress (discriminated avoidance) group and compared on the dependent measures of self-inflicted injury prevalence and severity. Results: The manipulation of stress conditions did not impact the rate of self-injury demonstrated by the rats. The results do not support a model of stress-induced SIB in rodents. Conclusions: Current findings provide evidence for caution in the development of pharmacotherapies of NSSI in human populations based on CNS stimulant models. Theoretical implications are discussed with respect to antecedent factors such as preinjury arousal level and environmental stress.


Sign in / Sign up

Export Citation Format

Share Document