Stable adaptive algorithm for Six Degrees-of-Freedom haptic rendering in a dynamic environment

2013 ◽  
Vol 29 (10) ◽  
pp. 1063-1075 ◽  
Author(s):  
Xiyuan Hou ◽  
Olga Sourina
1997 ◽  
Vol 119 (4) ◽  
pp. 707-717 ◽  
Author(s):  
Milovan Z˘ivanovic´ ◽  
Miomir Vukobratovic´

The procedure of modeling and the complete general form mathematical model of manipulators with six degrees of freedom in cooperative work are presented in the paper, together with the solution of undefiniteness problem with respect to force distribution. For the first time, a system of active spatial six-degree-of-freedom mechanisms elastically interconnected with the object (dynamic environment) is modeled. The reason for the emergence of the undefiniteness problem with respect to force is explained and the procedure for solving this problem given. Unlike the approaches given in the available literature, the undefiniteness problem with respect to force is solved in accordance with physical phenomena. The modeling procedure is illustrated by a simplified example.


2015 ◽  
Vol 8 (1) ◽  
pp. 67-78 ◽  
Author(s):  
Ge Yu ◽  
Dangxiao Wang ◽  
Yuru Zhang ◽  
Jing Xiao

1998 ◽  
Vol 9 ◽  
pp. 295-316 ◽  
Author(s):  
E. Mazer ◽  
J. M. Ahuactzin ◽  
P. Bessiere

We present a new approach to path planning, called the ``Ariadne's clew algorithm''. It is designed to find paths in high-dimensional continuous spaces and applies to robots with many degrees of freedom in static, as well as dynamic environments --- ones where obstacles may move. The Ariadne's clew algorithm comprises two sub-algorithms, called SEARCH and EXPLORE, applied in an interleaved manner. EXPLORE builds a representation of the accessible space while SEARCH looks for the target. Both are posed as optimization problems. We describe a real implementation of the algorithm to plan paths for a six degrees of freedom arm in a dynamic environment where another six degrees of freedom arm is used as a moving obstacle. Experimental results show that a path is found in about one second without any pre-processing.


2020 ◽  
pp. 67-73
Author(s):  
N.D. YUsubov ◽  
G.M. Abbasova

The accuracy of two-tool machining on automatic lathes is analyzed. Full-factor models of distortions and scattering fields of the performed dimensions, taking into account the flexibility of the technological system on six degrees of freedom, i. e. angular displacements in the technological system, were used in the research. Possibilities of design and control of two-tool adjustment are considered. Keywords turning processing, cutting mode, two-tool setup, full-factor model, accuracy, angular displacement, control, calculation [email protected]


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3740
Author(s):  
Olafur Oddbjornsson ◽  
Panos Kloukinas ◽  
Tansu Gokce ◽  
Kate Bourne ◽  
Tony Horseman ◽  
...  

This paper presents the design, development and evaluation of a unique non-contact instrumentation system that can accurately measure the interface displacement between two rigid components in six degrees of freedom. The system was developed to allow measurement of the relative displacements between interfaces within a stacked column of brick-like components, with an accuracy of 0.05 mm and 0.1 degrees. The columns comprised up to 14 components, with each component being a scale model of a graphite brick within an Advanced Gas-cooled Reactor core. A set of 585 of these columns makes up the Multi Layer Array, which was designed to investigate the response of the reactor core to seismic inputs, with excitation levels up to 1 g from 0 to 100 Hz. The nature of the application required a compact and robust design capable of accurately recording fully coupled motion in all six degrees of freedom during dynamic testing. The novel design implemented 12 Hall effect sensors with a calibration procedure based on system identification techniques. The measurement uncertainty was ±0.050 mm for displacement and ±0.052 degrees for rotation, and the system can tolerate loss of data from two sensors with the uncertainly increasing to only 0.061 mm in translation and 0.088 degrees in rotation. The system has been deployed in a research programme that has enabled EDF to present seismic safety cases to the Office for Nuclear Regulation, resulting in life extension approvals for several reactors. The measurement system developed could be readily applied to other situations where the imposed level of stress at the interface causes negligible material strain, and accurate non-contact six-degree-of-freedom interface measurement is required.


Sign in / Sign up

Export Citation Format

Share Document