scholarly journals Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health

2020 ◽  
Vol 56 (3) ◽  
pp. 299-317 ◽  
Author(s):  
Prem S. Bindraban ◽  
Christian O. Dimkpa ◽  
Renu Pandey

AbstractMineral phosphorus (P) fertilizers support high crop yields and contribute to feeding the teeming global population. However, complex edaphic processes cause P to be immobilized in soil, hampering its timely and sufficient availability for uptake by plants. The resultant low use efficiency of current water-soluble P fertilizers creates significant environmental and human health problems. Current practices to increase P use efficiency have been inadequate to curtail these problems. We advocate for the understanding of plant physiological processes, such as physiological P requirement, storage of excess P as phytate, and plant uptake mechanisms, to identify novel ways of designing and delivering P fertilizers to plants for improved uptake. We note the importance and implications of the contrasting role of micronutrients such as zinc and iron in stimulating P availability under low soil P content, while inhibiting P uptake under high P fertilization; this could provide an avenue for managing P for plant use under different P fertilization regimes. We argue that the improvement of the nutritional value of crops, especially cereals, through reduced phytic acid and increased zinc and iron contents should be among the most important drivers toward the development of innovative fertilizer products and fertilization technologies. In this paper, we present various pathways in support of this argument. Retuning P fertilizer products and application strategies will contribute to fighting hunger and micronutrient deficiencies in humans. Moreover, direct soil P losses will be reduced as a result of improved P absorption by plants.

2020 ◽  
Vol 2 ◽  
Author(s):  
Peter J. Talboys ◽  
John R. Healey ◽  
Paul J. A. Withers ◽  
Tiina Roose ◽  
Anthony C. Edwards ◽  
...  

Phosphorus (P) fertilizers have a dramatic effect on agricultural productivity, but conventional methods of application result in only limited recovery of the applied P. Given the increasing volatility in rock phosphate prices, more efficient strategies for P fertilizer use would be of economic and environmental benefit in the drive for sustainable intensification. This study used a combination of controlled-environment experiments and radioisotopic labeling to investigate the fertilizer use efficiency of a combination of seed (grain) dressing and foliar applications of P to spring wheat (Triticum aestivum L.). Radioisotopic labeling showed that the application of foliar P in the presence of photosynthetic light substantially increased both P-uptake into the leaf and P-mobilization within the plant, especially when an adjuvant was used. When compared with soil application of inorganic P buried into the rooting zone, a combination of a 3 μmol seed dressing and three successive 46.3 μmol plant−1 foliar applications were far more efficient at providing P fertilization benefits in P-limiting conditions. We conclude that a combination of seed dressing and foliar applications of P is potentially a better alternative to conventional soil-based application, offering greater efficiency in use of applied P both in terms of P-uptake rate and grain yield. Further work is required to evaluate whether these results can be obtained under a range of field conditions.


Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 191 ◽  
Author(s):  
Patricia Poblete-Grant ◽  
Philippe Biron ◽  
Thierry Bariac ◽  
Paula Cartes ◽  
María de La Luz Mora ◽  
...  

To maintain grassland productivity and limit resource depletion, scarce mineral P (phosphorus) fertilizers must be replaced by alternative P sources. The effect of these amendments on plant growth may depend on physicochemical soil parameters, in particular pH. The objective of this study was to investigate the effect of soil pH on biomass production, P use efficiency, and soil P forms after P amendment application (100 mg kg−1 P) using poultry manure compost (PM), rock phosphate (RP), and their combination (PMRP). We performed a growth chamber experiment with ryegrass plants (Lolium perenne) grown on two soil types with contrasting pH under controlled conditions for 7 weeks. Chemical P fractions, biomass production, and P concentrations were measured to calculate plant uptake and P use efficiency. We found a strong synergistic effect on the available soil P, while antagonistic effects were observed for ryegrass production and P uptake. We conclude that although the combination of PM and RP has positive effects in terms of soil P availability, the combined effects of the mixture must be taken into account and further evaluated for different soil types and grassland plants to maximize synergistic effects and to minimize antagonistic ones.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1224 ◽  
Author(s):  
Muhammad Izhar Shafi ◽  
Muhammad Adnan ◽  
Shah Fahad ◽  
Fazli Wahid ◽  
Ahsan Khan ◽  
...  

In calcareous soil, the significant portion of applied phosphorus (P) fertilizers is adsorbed on the calcite surface and becomes unavailable to plants. Addition of organic amendments with chemical fertilizers can be helpful in releasing the absorbed nutrients from these surfaces. To check out this problem, a field experiment was conducted for two years to determine the effect of P fertilizers and humic acid (HA) in enhancing P availability in soil and their ultimate effect on growth, yield and P uptake of wheat in calcareous soils. The experiment was comprised of five levels of P (0, 45, 67.5, 90 and 112.5 kg P2O5 ha−1) as a single superphosphate (SSP) and 2 levels of locally produced humic acid (with and without HA) arranged in a two factorial randomized complete block design (RCBD) with three replications. Wheat plant height, spike length, number of grains per spike, 1000-grain weight, grain, straw and biological yield were significantly improved by the addition of HA with SSP. Very often, the performance of 67.5 kg P2O5 ha−1 with HA were either similar or better than 90 or even 112.5 kg P2O5 ha−1 applied without HA. Post-harvest soil organic matter, AB-DTPA extractable and water-soluble P, plant P concentration and its uptake were also significantly improved by the addition of HA with SSP compared to sole SSP application. It was evident that P efficiency could be increased with HA addition and it has the potential to improve crop yield and plants P uptake in calcareous soils.


Jurnal Solum ◽  
2012 ◽  
Vol 9 (2) ◽  
pp. 51
Author(s):  
Herviyanti Herviyanti ◽  
Chici Anche ◽  
Gusnidar Gusnidar ◽  
Irwan Darfis

A research was carried out at glass house and at Soil Laboratory of Faculty of Agriculture, Andalas University Padang. The experiment was aimed to determine the interaction between humic material from compost and P fertilizer on some chemical properties of Oxisol, nutrient uptake and corn production. This experiment consisted of 2 factors (4 x 4) with three replications which were allocated in completely randomized design (CRD). The first factor was humic material having 4 doses (0, 400, 800, and 1200 ppm) and the 2nd factor was P fertilizer having 4 doses (100%, 75%, 50%, and 25% of recomendation (R)). The result showed that there was : 1) Interaction between humic materials and P fertilizer for the quality the corn seeds. Application of 800 ppm humic material improved the quality of the seeds even though at low level of P fertilizer. 2) Then, it also increased availability of P by 23.03 ppm, N total by 0.09 %, and decreased Al-exch by 0.53 me (100 g)-1 and Fe-exch by 25.62 ppm compared to threatment without application of humic material. Likewise, nutrients (N and P) uptake by plant also increased by 0.28 and 0.03 %, respectively. 3) Application of P fertilizer at 75 % R increased soil P availability by 3.77 ppm, N and P content of plant by 0.43 % and 0.06 %, and seed weight by 13.20 g and decreased Fe-exch by 21.16 ppm, compared to 25 % R of P fertilizer.Keywords : humic material, P- fertilizer, nutrient uptake


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Nina Siebers ◽  
Liming Wang ◽  
Theresa Funk ◽  
Sabine von Tucher ◽  
Ines Merbach ◽  
...  

Abstract Background The phosphorus (P) stocks of arable subsoils not only influence crop production but also fertilizer P sequestration. However, the extent of this influence is largely unknown. This study aimed to (i) determine the extent of P sequestration with soil depth, (ii) analyze P speciation after long-term P fertilization, and (iii) compare soil P tests in predicting crop yields. We analyzed four long-term fertilizer trials in Germany to a depth of 90 cm. Treatments received either mineral or organic P, or a combination of both, for 16 to 113 years. We determined inorganic and organic P pools using sequential extraction, and P speciation using 31P nuclear magnetic resonance (NMR) and X-ray absorption near edge structure (XANES) spectroscopy. In addition, we applied three P soil tests, double-lactate (DL), calcium acetate lactate (CAL), and diffusive gradients in thin films (DGT). Results The results suggested that plants are capable of mobilizing P from deeper soil layers when there is a negative P budget of the topsoil. However, fertilization mostly only showed insignificant effects on P pools, which were most pronounced in the topsoil, with a 1.6- to 4.4-fold increase in labile inorganic P (Pi; resin-P, NaHCO3–Pi) after mineral fertilization and a 0- to 1.9-fold increase of organic P (Po; NaHCO3–Po, NaOH–Po) after organic P fertilization. The differences in Po and Pi speciation were mainly controlled by site-specific factors, e.g., soil properties or soil management practice rather than by fertilization. When modeling crop yield response using the Mitscherlich equation, we obtained the highest R2 (R2 = 0.61, P < 0.001) among the soil P tests when using topsoil PDGT. However, the fit became less pronounced when incorporating the subsoil. Conclusion We conclude that if the soil has a good P supply, the majority of P taken up by plants originates from the topsoil and that the DGT method is a mechanistic surrogate of P plant uptake. Thus, DGT is a basis for optimization of P fertilizer recommendation to add as much P fertilizer as required to sustain crop yields but as low as necessary to prevent harmful P leaching of excess fertilizer P.


2020 ◽  
Author(s):  
Xiaoyan Tang ◽  
Chaochun Zhang ◽  
Yang Yu ◽  
Jianbo Shen ◽  
Wopke van der Werf ◽  
...  

Abstract Aims Intercropping cereals with legumes may achieve high crop yields at reduced input levels. Several studies have indicated that intercropping increases phosphorus use efficiency but no overarching analysis exists on the role of species traits and input levels. Here we synthesize the available information on P use efficiency in cereal/legume intercropping. Methods Global data on yields, P uptake and nutrient input in cereal/legume mixtures were extracted from the literature and statistically analyzed. Co-variables explaining P uptake efficiency and yield were considered. Results P uptake was substantially increased with an average value of LERP, the land equivalent ratio for P uptake, of 1.24, and an average NEP (observed P uptake minus expected P uptake) of 3.67 kg P ha−1. The conversion efficiency of P uptake to biomass decreased with P uptake and was lower in intercrops than in sole crops but the conversion efficiency to yield was not affected by intercropping. The P fertilizer requirement was 21% lower in intercrops than in sole crops for the same yields. Conclusions Substantial improvements in land use efficiency and P uptake are obtained by cereal/legume intercropping. Cereal/legume intercropping has therefore potential to increase P fertilizer use efficiency in agriculture.


2015 ◽  
Author(s):  
Peter Baas ◽  
Colin Bell ◽  
Lauren M Mancini ◽  
Melanie N Lee ◽  
Richard T Conant ◽  
...  

Global agricultural productivity may be constrained by the finite and limited supply of phosphorus (P), adding to the challenges in meeting the projected needs of a growing human population in the coming decades. In addition, when P fertilizers are added to soils, they can become bound to soils resulting in low fertilizer efficiency. However, P-mobilizing bacteria could potentially liberate soil-bound P, resulting in a higher plant P uptake and increased yield. Bacteria can mobilize P through several mechanisms, suggesting that consortia of P-bacteria may be more effective than single species. Species diversity can have a synergistic, or non-additive, effect on ecosystem functioning (“the whole is more than the sum of its parts”) but rarely is the microbial community structure intentionally managed to improve plant nutrient uptake. We investigated whether inoculation of soils with a four-species bacterial community developed to mobilize soil P could increase plant productivity. In wheat and turf trials, we found that Mammoth P was able to deliver yields equivalent to those achieved using conventional fertilizer applications. Herbs and fruits showed that the combination of fertilizer with Mammoth P significantly increased productivity - in some cases productivity doubled. Metabolites produced by the Mammoth P consortium led to increased yields in some cases, suggesting that microbial products (produced in the absence of plants) played a role in enhancing plant productivity. Results from these trials indicate substantial potential of Mammoth P to enhance P supply to plants, improving P fertilizer use-efficiency and increasing agricultural productivity.


2020 ◽  
Vol 12 (7) ◽  
pp. 15
Author(s):  
Carlos Henrique Eiterer de Souza ◽  
Roberto dos A. Reis Jr ◽  
Victor Gustavo Soares Ribeiro ◽  
Murilo Mendes Machado ◽  
Miguel Martins Neto ◽  
...  

Phosphorus (P) supply to crops is a major constraint on the quantity and quality of food production in tropical soils, which are often characterized by highly weathered soils having low phosphorus use efficiency. Increasing P fertilizer use efficiency is a good tool for increasing food production to feed an increasing world population. Enhanced efficiency P fertilizer is used to achieve this goal. The lack of information about soil P diffusive flux and corn and common bean yield response with increased efficiency P fertilizers justify studies to evaluate the performance of this type of fertilizer. The aims of this study were to evaluate P diffusive flux and corn and common bean crop response to P sources and rates. A laboratory trial was carried out to evaluate soil P diffusive flux in response to P sources (MAP and Policote coated MAP). Field trials were carried out to evaluate corn and common bean yields in response to P sources (MAP and Policote coated MAP) and rates. Policote, an additive based on water-soluble polymers, is an anionic copolymer with iron an aluminum affinity. Increasing contact time between P-fertilizers and soil reduced phosphorus diffusive flux. Policote coated P-fertilizer resulted in higher phosphorus diffusion than conventional phosphorus fertilizer. Phosphorus fertilization increased corn and common bean yields. Policote coated phosphorus fertilizer resulted in higher agronomic P efficiency use, corn, and common bean yields than conventional phosphorus fertilizer. Policote coated P fertilizer can be used as an enhanced efficiency fertilizer and is a more efficient way to deliver required phosphorous to plants. Reducing farm investment, increasing agricultural profits, preserve phosphatic rocks reserves, and avoid the overuse of phosphate fertilizer could be realized through the rational use of enhanced efficiency fertilizers and fertilizer rate use reduction.


2015 ◽  
Author(s):  
Peter Baas ◽  
Colin Bell ◽  
Lauren M Mancini ◽  
Melanie N Lee ◽  
Richard T Conant ◽  
...  

Global agricultural productivity may be constrained by the finite and limited supply of phosphorus (P), adding to the challenges in meeting the projected needs of a growing human population in the coming decades. In addition, when P fertilizers are added to soils, they can become bound to soils resulting in low fertilizer efficiency. However, P-mobilizing bacteria could potentially liberate soil-bound P, resulting in a higher plant P uptake and increased yield. Bacteria can mobilize P through several mechanisms, suggesting that consortia of P-bacteria may be more effective than single species. Species diversity can have a synergistic, or non-additive, effect on ecosystem functioning (“the whole is more than the sum of its parts”) but rarely is the microbial community structure intentionally managed to improve plant nutrient uptake. We investigated whether inoculation of soils with a four-species bacterial community developed to mobilize soil P could increase plant productivity. In wheat and turf trials, we found that Mammoth P was able to deliver yields equivalent to those achieved using conventional fertilizer applications. Herbs and fruits showed that the combination of fertilizer with Mammoth P significantly increased productivity - in some cases productivity doubled. Metabolites produced by the Mammoth P consortium led to increased yields in some cases, suggesting that microbial products (produced in the absence of plants) played a role in enhancing plant productivity. Results from these trials indicate substantial potential of Mammoth P to enhance P supply to plants, improving P fertilizer use-efficiency and increasing agricultural productivity.


2019 ◽  
Vol 103 (1) ◽  
pp. 43-45 ◽  
Author(s):  
Carlos Crusciol ◽  
João Rigon ◽  
Juliano Calonego ◽  
Rogério Soratto

Some crop species could be used inside a cropping system as part of a strategy to increase soil P availability due to their capacity to recycle P and shift the equilibrium between soil P fractions to benefit the main crop. The release of P by crop residue decomposition, and mobilization and uptake of otherwise recalcitrant P are important mechanisms capable of increasing P availability and crop yields.


Sign in / Sign up

Export Citation Format

Share Document