High additions of nitrogen affect plant species-specific differences in the composition of main microbial groups and the uptake of rhizodeposited carbon in a grassland soil

Author(s):  
Andrea Leptin ◽  
David Whitehead ◽  
Kate H. Orwin ◽  
Samuel R. McNally ◽  
John E. Hunt ◽  
...  
PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0237894
Author(s):  
Amy E. Kendig ◽  
Vida J. Svahnström ◽  
Ashish Adhikari ◽  
Philip F. Harmon ◽  
S. Luke Flory

Infectious diseases and invasive species can be strong drivers of biological systems that may interact to shift plant community composition. For example, disease can modify resource competition between invasive and native species. Invasive species tend to interact with a diversity of native species, and it is unclear how native species differ in response to disease-mediated competition with invasive species. Here, we quantified the biomass responses of three native North American grass species (Dichanthelium clandestinum, Elymus virginicus, and Eragrostis spectabilis) to disease-mediated competition with the non-native invasive grass Microstegium vimineum. The foliar fungal pathogen Bipolaris gigantea has recently emerged in Microstegium populations, causing a leaf spot disease that reduces Microstegium biomass and seed production. In a greenhouse experiment, we examined the effects of B. gigantea inoculation on two components of competitive ability for each native species: growth in the absence of competition and biomass responses to increasing densities of Microstegium. Bipolaris gigantea inoculation affected each of the three native species in unique ways, by increasing (Dichanthelium), decreasing (Elymus), or not changing (Eragrostis) their growth in the absence of competition relative to mock inoculation. Bipolaris gigantea inoculation did not, however, affect Microstegium biomass or mediate the effect of Microstegium density on native plant biomass. Thus, B. gigantea had species-specific effects on native plant competition with Microstegium through species-specific biomass responses to B. gigantea inoculation, but not through modified responses to Microstegium density. Our results suggest that disease may uniquely modify competitive interactions between invasive and native plants for different native plant species.


2019 ◽  
Author(s):  
Ivan Andreevich Kerchev

Stridulatory signals are involved in conspecific interactions between bark beetles (Coleoptera: Curculionidae, Scolytinae). In this study, we compared the qualitative profiles of acoustic signals in three species from the genus Polygraphus Er. Sympatry can be periodically observed in two of them – P. proximus and P. subopacus. Sporadically they occur on the same plants. P. nigrielytris colonize distinctly different host plant species; however, on the island of Sakhalin it inhabits the same biotopes. The purpose of the study is to identify species-specific parameters and the extent of differences in stridulatory signals of these species. Airborne signals produced during the contact of males of the same species were experimentally recorded. Among tested parameters of stridulatory signals, as the most species-specific were noted: chirp duration, interchirp interval, number of tooth-strikes per chirp, and intertooth-strike interval.


2019 ◽  
Vol 6 (11) ◽  
pp. 190744 ◽  
Author(s):  
Hannah M. Prather ◽  
Angélica Casanova-Katny ◽  
Andrew F. Clements ◽  
Matthew W. Chmielewski ◽  
Mehmet A. Balkan ◽  
...  

Polar systems are experiencing rapid climate change and the high sensitivity of these Arctic and Antarctic ecosystems make them especially vulnerable to accelerated ecological transformation. In Antarctica, warming results in a mosaic of ice-free terrestrial habitats dominated by a diverse assemblage of cryptogamic plants (i.e. mosses and lichens). Although these plants provide key habitat for a wide array of microorganisms and invertebrates, we have little understanding of the interaction between trophic levels in this terrestrial ecosystem and whether there are functional effects of plant species on higher trophic levels that may alter with warming. Here, we used open top chambers on Fildes Peninsula, King George Island, Antarctica, to examine the effects of passive warming and moss species on the abiotic environment and ultimately on higher trophic levels. For the dominant mosses, Polytrichastrum alpinum and Sanionia georgicouncinata , we found species-specific effects on the abiotic environment, including moss canopy temperature and soil moisture. In addition, we found distinct shifts in sexual expression in P . alpinum plants under warming compared to mosses without warming, and invertebrate communities in this moss species were strongly correlated with plant reproduction. Mosses under warming had substantially larger total invertebrate communities, and some invertebrate taxa were influenced differentially by moss species. However, warmed moss plants showed lower fungal biomass than control moss plants, and fungal biomass differed between moss species. Our results indicate that continued warming may impact the reproductive output of Antarctic moss species, potentially altering terrestrial ecosystems dynamics from the bottom up. Understanding these effects requires clarifying the foundational, mechanistic role that individual plant species play in mediating complex interactions in Antarctica's terrestrial food webs.


2019 ◽  
Vol 116 (15) ◽  
pp. 7371-7376 ◽  
Author(s):  
Jenalle L. Eck ◽  
Simon M. Stump ◽  
Camille S. Delavaux ◽  
Scott A. Mangan ◽  
Liza S. Comita

Microbes are thought to maintain diversity in plant communities by specializing on particular species, but it is not known whether microbes that specialize within species (i.e., on genotypes) affect diversity or dynamics in plant communities. Here we show that soil microbes can specialize at the within-population level in a wild plant species, and that such specialization could promote species diversity and seed dispersal in plant communities. In a shadehouse experiment in Panama, we found that seedlings of the native tree species, Virola surinamensis (Myristicaceae), had reduced performance in the soil microbial community of their maternal tree compared with in the soil microbial community of a nonmaternal tree from the same population. Performance differences were unrelated to soil nutrients or to colonization by mycorrhizal fungi, suggesting that highly specialized pathogens were the mechanism reducing seedling performance in maternal soils. We then constructed a simulation model to explore the ecological and evolutionary consequences of genotype-specific pathogens in multispecies plant communities. Model results indicated that genotype-specific pathogens promote plant species coexistence—albeit less strongly than species-specific pathogens—and are most effective at maintaining species richness when genetic diversity is relatively low. Simulations also revealed that genotype-specific pathogens select for increased seed dispersal relative to species-specific pathogens, potentially helping to create seed dispersal landscapes that allow pathogens to more effectively promote diversity. Combined, our results reveal that soil microbes can specialize within wild plant populations, affecting seedling performance near conspecific adults and influencing plant community dynamics on ecological and evolutionary time scales.


2019 ◽  
Vol 30 (4) ◽  
pp. 674-686 ◽  
Author(s):  
Verena Busch ◽  
Valentin H. Klaus ◽  
Deborah Schäfer ◽  
Daniel Prati ◽  
Steffen Boch ◽  
...  

2010 ◽  
Vol 334 (1-2) ◽  
pp. 353-363 ◽  
Author(s):  
Leopold Sauheitl ◽  
Bruno Glaser ◽  
Michaela Dippold ◽  
Katharina Leiber ◽  
Alexandra Weigelt

2008 ◽  
Vol 56 (2) ◽  
pp. 153 ◽  
Author(s):  
Maria Zabelê Dantas Moura ◽  
Geraldo Luiz Gonçalves Soares ◽  
Rosy Mary dos Santos Isaias

When different cecidogenous species attack the same plant species, each one causes distinct plant tissue reorganisation, and forms typical gall structures. Two Lantana camara L. leaf galls induced by Aceria lantanae (Cook) (Acarina: Eriophyidae) and Schismatodiplosis lantanae (Rübsaamen) (Diptera: Cecidomyiidae) were collected in a subspontaneous population at Rio Grande do Sul, Brazil. A. lantanae crinckle galls were uni- or multi-chambered and contained several mites, caused by several leaf foldings, and consisted of hyperplasic epidermis and parenchyma. S. lantanae induced uni-chambered pouch galls inhabited by one larvae or pupa. This gall consisted predominantly of hypertrophied spongy parenchyma. Our results documented how these herbivores acted in cells with the same initial morphogenetic competence, altering leaf pattern, and inducing their specific extended phenotype.


2011 ◽  
Vol 8 (3) ◽  
pp. 4359-4389
Author(s):  
M. Dorodnikov ◽  
K.-H. Knorr ◽  
Y. Kuzyakov ◽  
M. Wilmking

Abstract. Contribution of recent photosynthates to methanogenesis and plant-mediated methane (CH4) transport were studied on two dominating vascular plant species – Eriophorum vaginatum and Scheuchzeria palustris – at three microform types (hummocks, lawns and hollows) of a boreal natural minerogenic, oligotrophic fen in Eastern Finland. Measurements of total CH4 flux, isolation of shoots from entire peat and 14C-pulse labeling of mesocosms under controlled conditions allowed estimation of plant-mediated CH4 flux and contribution of recent (14C) photosynthates to total CH4. The obtained results showed (i) CH4 flux increases in the order E. hummocks ≤ E. lawns < S. hollows corresponding to the increasing water table level of the microforms as derived from in situ measurements. (ii) Plant-mediated CH4 flux accounted for 38, 31 and 51 % of total CH4 at E. hummocks, E. lawns and S. hollows, respectively. (iii) Contribution of recent photosynthates to methanogenesis accounted for 0.03 % for E. hummocks, 0.06 % for E. lawns and 0.13 % for S. hollows of assimilated 14C. Thus, S. palustris microsites are characterized by a higher efficiency for transporting CH4 from the peat column to the atmosphere when compared to E. vaginatum of drier lawns and hummocks. Contribution of recent plant photosynthates to methanogenesis was not depended on the amount of plant biomass: smaller S. palustris had higher 14CH4 as compared to larger E. vaginatum. Therefore, for the assessment of CH4 production and emission over meso- and macroscales as well as for the implication and development of C modeling of CH4 fluxes, it is necessary to account for plant species-specific processes including CH4 production, consumption and transportation and the attribution of those species to topographic microforms.


2020 ◽  
Author(s):  
Kenneth Dumack ◽  
Kai Feng ◽  
Sebastian Flues ◽  
Melanie Sapp ◽  
Susanne Schreiter ◽  
...  

AbstractIn a field experiment we investigated the influence of the environmental filters soil type and plant species identity on rhizosphere community assembly of Cercozoa, a dominant group of (mostly bacterivorous) soil protists. The experiment was set up with two plant species, lettuce and potato, grown in an experimental plot system with three contrasting soils. Plant species (14%) and rhizosphere origin (vs. bulk soil) with 13%, together explained four times more variation in cercozoan beta diversity than the three soil types (7% explained variation in beta diversity). Our results clearly confirm the existence of plant species-specific protist communities. Network analyses of bacteria-Cercozoa rhizosphere communities identified scale-free small world topologies, indicating mechanisms of self-organization. While the assembly of rhizosphere bacterial communities is bottom-up controlled through the resource supply from root (secondary) metabolites, our results support the hypothesis that the net effect may depend on the strength of top-down control by protist grazers. Since grazing of protists has a strong impact on the composition and functioning of bacteria communities, protists expand the repertoire of plant genes by functional traits, and should be considered as ‘protist microbiomes’ in analogy to ‘bacterial microbiomes’.HighlightMicrobiomes of rhizosphere protists are plant species-specific and tightly co-evolving with their bacterial prey, thereby extending and modifying the functional repertoire of the bacterial-plant symbiosis.


Sign in / Sign up

Export Citation Format

Share Document