Effects of fungicides on arbuscular mycorrhizal fungi: differential responses in alkaline phosphatase activity of external and internal hyphae

2000 ◽  
Vol 31 (5) ◽  
pp. 361-365 ◽  
Author(s):  
R. Kjøller ◽  
S. Rosendahl
2020 ◽  
Vol 17 (4) ◽  
pp. 150
Author(s):  
O. TRISILAWATI

<p>ABSTRACT</p><p>The effects of several arbuscular mycorrhizal fungi (AMF) on thegrowth, nutrient uptake (nitrogen, phosphorus, and potassium), and acidphosphate activity of two promising numbers of Anacardium occidentaleseedling were evaluated. The experiment was conducted in the greenhouse of Indonesian Spices and Medicinal Crops Research Institute(BALITTRO) in 2002 for six months on a randomized design with twofactors and four replicates. First factor was isolate (six isolates of AMFand one control) consisting of : 1) control; 2) Glomus aggregatum; 3)Glomus etunicatum; 4) Mycofer; 5) Glomus sp.; 6) a mixture of Glomussp1, Glomus sp2, Glomus sp3, Glomus sp4, Glomus etunicatum,Gigaspora margarita, Gigaspora sp., and Enthropospora sp., and 7)Gigaspora sp. The second factor was two cashew promising numbers :Asembagus and Wonogiri. The results showed that AMF inoculationsignificantly affected the growth of cashew. Mycofer and mixed AMFwere more effective to Wonogiri promising number, while for Asembaguspromising number inoculation of mycofer was more effective. Inoculationwith mycofer to Asembagus promising number increased the uptake of Pand K nutrients by 65 and 53% while inoculation with mycofer and mixedAMF to Wonogiri promising number increased the uptake of N, P and Knutrients by 55, 38, and 17%, and by 18, 31, and 17%. Moreover, theAMF inoculation resulted in higher phosphatase activity. In mycorrhizalAsembagus promising number infected by mixed AMF, the increment ofphosphatase activity was 136.5%, whether in Wonogiri promising numberinfected by mycofer, the increment of phosphatase activity was 80% thancontrol.</p><p>Key words: Anacardium occidentale, promising number, growth,phosphatase activity</p><p>ABSTRAK</p><p>Pengaruh Pupuk Hayati Fungi Mikoriza Arbuskula(FMA) terhadap Pertumbuhan Benih Jambu Mete</p><p>Penelitian ini bertujuan untuk mengetahui pengaruh beberapa jenisfungi mikoriza arbuskula (FMA) terhadap pertumbuhan, serapan hara danaktivitas enzim fosfatase dari dua nomor harapan benih jambu mete(Anacardium occidentale). Penelitian dilakukan di rumah kaca Balittropada tahun 2002 selama 6 bulan, menggunakan rancangan acak yangterdiri dari dua faktor dan diulang empat kali. Faktor pertama adalahisolate (6 jenis isolat FMA dan satu kontrol) yaitu: 1). kontrol; 2). Glomusaggregatum; 3) Glomus etunicatum; 4). Mycofer; 5). Glomus sp.; 6).campuran dari Glomus sp1, Glomus sp2, Glomus sp3, Glomus sp4, Glomusetunicatum, Gigaspora margarita, Gigaspora sp., Enthropospora sp., dan7). Gigaspora sp. Faktor kedua adalah nomor harapan jambu mete, yaituAsembagus dan Wonogiri. Hasil penelitian mendapatkan bahwa inokulasiFMA berpengaruh nyata terhadap pertumbuhan jambu mete. Mycofer dancampuran FMA lebih efektif berpengaruh terhadap nomor harapanWonogiri, sedangkan mycofer lebih efektif berpengaruh terhadap nomorharapan Asembagus. Serapan hara P dan K pada nomor harapanAsembagus yang diinokulasi mycofer meningkat sebesar 65 dan 53%,sedangkan nomor harapan Wonogiri yang diinokulasi mycofer dancampuran FMA, serapan hara N, P, dan K meningkat masing-masingsebesar 55; 38; dan 17%, dan 18; 31; dan 17%. Selain itu, inokulasi FMAdapat meningkatkan aktivitas fosfatase akar jambu mete. Peningkatanaktivitas fosfatase akar jambu mete nomor harapan Asembagus yangterinfeksi oleh campuran FMA sebesar 136,5%, sedangkan pada nomorharapan Wonogiri yang terinfeksi mycofer, peningkatnnya sebesar 80%dibandingkan kontrol.</p><p>Kata kunci: Anacardium occidentale, nomor harapan, pertumbuhan,aktivitas fosfatase</p>


2015 ◽  
Vol 6 ◽  
Author(s):  
Valentina Fiorilli ◽  
Marta Vallino ◽  
Chiara Biselli ◽  
Antonella Faccio ◽  
Paolo Bagnaresi ◽  
...  

2021 ◽  
Vol 13 (6) ◽  
pp. 3244
Author(s):  
Mengying Li ◽  
Liqun Cai

The addition of biochar alters soil habitats and has an active effect on the symbiotic relationship between plants and mycorrhizal fungi. However, it is still unclear whether this effect alters the strategy of phosphorus uptake by plants. Therefore, pot experiments were conducted in order to investigate the effects of mycorrhizal colonization and biochar addition on plant growth, phosphorus absorption, and rhizosphere Olsen-P supply in maize under two moisture conditions—60% field water capacity (FWC) and 40% FWC. It was found that the addition of biochar increased the colonization rate of arbuscular mycorrhizal fungi (AMF), and all the addition treatments significantly improved maize biomass, peroxidase (POD) activity, chlorophyll content, photosynthetic rate (Pn), plant height, leaf area, shoot phosphorus content, and phosphorus uptake by maize under the two moisture conditions. In addition, biochar had significant effects on root morphology under both water conditions, whereas AMF only showed significant effects under water stress. In contrast, phosphatase activity and microbial activity were higher in the AMF inoculation treatment than in the biochar addition treatment, and the trend was more significant under water stress. Principal component analysis (PCA) showed that root morphology, rhizosphere microbial activity, phosphatase activity, available phosphorus content, and shoot phosphorus content had significant positive correlations. It was concluded that biochar aids plant uptake of phosphorus mainly by regulating root morphology and plant phosphorus content, whereas the large mycelium of AMF enhances microbial activity and phosphatase activity, thereby enabling more efficient phosphorus uptake by maize, especially under conditions of water stress.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1035B-1035
Author(s):  
Andrew D. Cartmill ◽  
Fred T. Davies ◽  
Alejandro Alarcon ◽  
Luis A. Valdez-Aguilar

Sustainable horticultural production will increasingly have to rely on economically feasible and environmentally sound solutions to problems associated with high levels of bicarbonate (HCO -3) and associated high pH in irrigation water. The ability of arbuscular mycorrhizal fungi (AMF; GlomusZAC-19) to enhance plant tolerance to HCO3- was tested on the growth, physiology and nutrient uptake of Rosamultiflora Thunb. ex J. Murr. cv. Burr (rose). Arbuscular mycorrhizal colonized and noninoculated (non-AMF) plants were treated with 0, 2.5, 5, and 10 mm HCO -3. Increasing HCO -3 concentration and associated high pH and electrical conductivity (EC) reduced plant growth, leaf elemental uptake and acid phosphatase activity (ACP), while increasing alkaline phosphatase activity (ALP). Inoculation with AMF enhanced plant tolerance to HCO -3 as indicated by greater plant growth, leaf elemental uptake (N, P, K, Ca, Fe, Zn, Al, Bo), leaf chlorophyll content, higher mycorrhizal inoculation effect (MIE), lower root iron reductase activity, and generally lower wall-bound ACP (at 2.5 mm HCO3-), and higher soluble ALP (at 10 mm HCO3-). While AMF colonization (arbuscules, vesicles, and hyphae formation) was reduced by increasing HCO -3 concentration, colonization still occurred at high HCO -3. At 2.5 mm HCO3-, AMF plant growth was comparable to plants at 0 mm HCO3-, further indicating the beneficial effect of AMF for alleviation of HCO3- stress.


2015 ◽  
Vol 42 (12) ◽  
pp. 1158 ◽  
Author(s):  
Jun Ma ◽  
Martina Janoušková ◽  
Yansu Li ◽  
Xianchang Yu ◽  
Yan Yan ◽  
...  

Symbiosis with root-associated arbuscular mycorrhizal fungi (AMF) can improve plant phosphorus (P) uptake and alleviate environmental stresses. It could be also an effective mean to promote plant performance under low temperatures. The combined effects of arbuscular mycorrhiza and low temperature (15°C/10°C day/night) on cucumber seedlings were investigated in the present study. Root colonisation by AMF, succinate dehydrogenase and alkaline phosphatase activity in the intraradical fungal structures, plant growth parameters, and expression profiles of four cucumber phosphate (Pi) transporters, the fungal Pi transporter GintPT and alkaline phosphatase GintALP were determined. Cold stress reduced plant growth and mycorrhizal colonisation. Inoculation improved cucumber growth under ambient temperatures, whereas under cold stress only root biomass was significantly increased by inoculation. AMF supplied P to the host plant under ambient temperatures and cold stress, as evidenced by the higher P content of mycorrhizal plants compared with non-mycorrhizal plants. Thus, the cold-stressed cucumber seedlings still benefited from mycorrhiza, although the benefit was less than that under ambient temperatures. In accordance with this, a cucumber Pi transporter gene belonging to the Pht1 gene family was strongly induced by mycorrhiza at ambient temperature and to a lesser extent under cold stress. The other three Pi transporters tested from different families were most highly expressed in cold-stressed mycorrhizal plants, suggesting a complex interactive effect of mycorrhiza and cold stress on internal P cycling in cucumber plants.


Sign in / Sign up

Export Citation Format

Share Document