Teleconnections of inter-annual streamflow fluctuation in Slovakia with Arctic Oscillation, North Atlantic Oscillation, Southern Oscillation, and Quasi-Biennial Oscillation phenomena

2007 ◽  
Vol 24 (4) ◽  
pp. 655-663 ◽  
Author(s):  
Pavla Pekarova ◽  
Jan Pekar
2014 ◽  
Vol 62 (3) ◽  
pp. 169-176 ◽  
Author(s):  
Miriam Fendeková ◽  
Pavla Pekárová ◽  
Marián Fendek ◽  
Ján Pekár ◽  
Peter Škoda

Abstract Changes in runoff parameters are very important for Slovakia, where stream-flow discharges, being supplied by precipitation and groundwater runoff, are preferentially influenced by climatic conditions. Therefore, teleconnections between runoff parameters, climate parameters and global atmospheric drivers such as North Atlantic Oscillation, Southern Pacific Oscillation, Quasi-biennial oscillation and solar activity were studied in the Nitra River Basin, Slovakia. Research was mostly based on records of 80 years (1931-2010) for discharges and baseflow, and 34 years for groundwater heads. Methods of autocorrelation, spectral analysis, cross-correlation and coherence function were used. Results of auto- correllograms for discharges, groundwater heads and base flow values showed a very distinct 11-year and 21-year periodicity. Spectrogram analysis documented the 11-year, 7.8-year, 3.6-year and 2.4-year periods in the discharge, precipitation and air temperature time series. The same cycles except of 11-years were also identified in the long-term series of the North Atlantic Oscillation and Southern Pacific Oscillation indices. The cycle from approximately 2.3 to 2.4-years is most likely connected with Quasi-biennial oscillation. The close negative correlation between the North Atlantic Oscillation winter index and the hydrological surface and groundwater parameters can be used for their prediction within the same year and also for one year in advance.


Oxygen ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 32-45
Author(s):  
Kostas Eleftheratos ◽  
Dimitra Kouklaki ◽  
Christos Zerefos

Sixteen years (July 2003–July 2019) of ground-based measurements of total ozone in the urban environment of Athens, Greece, are analyzed in this work. Measurements were acquired with a single Brewer monochromator operating on the roof of the Biomedical Research Foundation of the Academy of Athens since July 2003. We estimate a 16-year climatological mean of total ozone in Athens of about 322 DU, with no significant change since 2003. Ozone data from the Brewer spectrophotometer were compared with TOMS, OMI, and GOME-2A satellite retrievals. The results reveal excellent correlations between the ground-based and satellite ozone measurements greater than 0.9. The variability of total ozone over Athens related to the seasonal cycle, the quasi biennial oscillation (QBO), the El Nino Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), the 11-year solar cycle, and tropopause pressure variability is presented.


2016 ◽  
Vol 16 (2) ◽  
pp. 417-436 ◽  
Author(s):  
F. Ebojie ◽  
J. P. Burrows ◽  
C. Gebhardt ◽  
A. Ladstätter-Weißenmayer ◽  
C. von Savigny ◽  
...  

Abstract. An analysis of the tropospheric ozone (O3) columns (TOCs) derived from SCIAMACHY limb-nadir-matching (LNM) observations during the period 2003–2011, focusing on global variations in TOC, is described. The changes are derived using a multivariate linear regression model. TOC shows changes of −0.2 ± 0.4, 0.3 ± 0.4, 0.1 ± 0.5 and 0.1 ± 0.2 % yr−1, which are not statistically significant at the 2σ level in the latitude bands 30–50° N, 20° S–0, 0–20° N and 50–30° S, respectively. Tropospheric O3 shows statistically significant increases over some regions of South Asia (1–3 % yr−1), the South American continent (up to 2 % yr−1), Alaska (up to 2 % yr−1) and around Congo in Africa (up to 2 % yr−1). Significant increase in TOC is determined off the continents including Australia (up to 2 % yr−1), Eurasia (1–3 % yr−1) and South America (up to 3 % yr−1). Significant decrease in TOC (up to −3 % yr−1) is observed over some regions of the continents of North America, Europe and South America. Over the oceanic regions including the Pacific, North Atlantic and Indian oceans, significant decreases in TOC (−1 to −3 % yr−1) were observed. In addition, the response of the El Niño–Southern Oscillation (ENSO) and quasi-biennial oscillation (QBO) to changes in TOC for the period 2003–2011 was investigated. The result shows extensive regions, mostly in the tropics and Northern Hemisphere extratropics, of significant ENSO responses to changes in TOC and a significant QBO response to TOC changes over some regions.


2021 ◽  
Vol 13 (23) ◽  
pp. 4923
Author(s):  
Michal Kozubek ◽  
Jan Laštovička ◽  
Radek Zajicek

This study analyses long-term trends in temperature and wind climatology based on ERA5 data. We study climatology and trends separately for every decade from 1980 to 2020 and their changes during this period. This study is focused on the pressure levels between 100–1 hPa, which essentially covers the whole stratosphere. We also analyze the impact of the sudden stratospheric warmings (SSW), North Atlantic Oscillation (NAO), El Nino Southern Oscillation (ENSO) and Quasi-biennial oscillation (QBO). This helps us to find details of climatology and trend behavior in the stratosphere in connection to these phenomena. ERA5 is one of the newest reanalysis, which is widely used for the middle atmosphere. We identify the largest differences which occur between 1990–2000 and 2000–2010 in both temperature climatology and trends. We suggest that these differences could relate to the different occurrence frequency of SSWs in 1990–2000 versus 2000–2010.


2012 ◽  
Vol 12 (11) ◽  
pp. 30825-30867
Author(s):  
G. Kirgis ◽  
T. Leblanc ◽  
I. S. McDermid ◽  
T. D. Walsh

Abstract. The Jet Propulsion Laboratory (JPL) lidars, at the Mauna Loa Observatory, Hawaii (MLO, 19.5° N, 155.6° W) and the JPL Table Mountain Facility (TMF, California, 34.5° N, 117.7° W), have been measuring vertical profiles of stratospheric ozone routinely since the early 1990's and late-1980s respectively. Interannual variability of ozone above these two sites was investigated using a multi-linear regression analysis on the deseasonalized monthly mean lidar and satellite time-series at 1 km intervals between 20 and 45 km from January 1995 to April 2011, a period of low volcanic aerosol loading. Explanatory variables representing the 11-yr solar cycle, the El Niño Southern Oscillation, the Quasi-Biennial Oscillation, the Eliassen–Palm flux, and horizontal and vertical transport were used. A new proxy, the mid-latitude ozone depleting gas index, which shows a decrease with time as an outcome of the Montreal Protocol, was introduced and compared to the more commonly used linear trend method. The analysis also compares the lidar time-series and a merged time-series obtained from the space-borne stratospheric aerosol and gas experiment II, halogen occultation experiment, and Aura-microwave limb sounder instruments. The results from both lidar and satellite measurements are consistent with recent model simulations which propose changes in tropical upwelling. Additionally, at TMF the ozone depleting gas index explains as much variance as the Quasi-Biennial Oscillation in the upper stratosphere. Over the past 17 yr a diminishing downward trend in ozone was observed before 2000 and a net increase, and sign of ozone recovery, is observed after 2005. Our results which include dynamical proxies suggest possible coupling between horizontal transport and the 11-yr solar cycle response, although a dataset spanning a period longer than one solar cycle is needed to confirm this result.


2013 ◽  
Vol 141 (11) ◽  
pp. 3801-3813 ◽  
Author(s):  
Anna Maidens ◽  
Alberto Arribas ◽  
Adam A. Scaife ◽  
Craig MacLachlan ◽  
Drew Peterson ◽  
...  

Abstract December 2010 was unusual both in the strength of the negative North Atlantic Oscillation (NAO) intense atmospheric blocking and the associated record-breaking low temperatures over much of northern Europe. The negative North Atlantic Oscillation for November–January was predicted in October by 8 out of 11 World Meteorological Organization Global Producing Centres (WMO GPCs) of long-range forecasts. This paper examines whether the unusual strength of the NAO and temperature anomaly signals in early winter 2010 are attributable to slowly varying boundary conditions [El Niño–Southern Oscillation state, North Atlantic sea surface temperature (SST) tripole, Arctic sea ice extent, autumn Eurasian snow cover], and whether these were modeled in the Met Office Global Seasonal Forecasting System version 4 (GloSea4). Results from the real-time forecasts showed that a very robust signal was evident in both the surface pressure fields and temperature fields by the beginning of November. The historical reforecast set (hindcasts), used to calibrate and bias correct the real-time forecast, showed that the seasonal forecast model reproduces at least some of the observed physical mechanisms that drive the NAO. A series of ensembles of atmosphere-only experiments was constructed, using forecast SSTs and ice concentrations from November 2010. Each potential mechanism in turn was systematically isolated and removed, leading to the conclusion that the main mechanism responsible for the successful forecast of December 2010 was anomalous ocean heat content and associated SST anomalies in the North Atlantic.


Sign in / Sign up

Export Citation Format

Share Document