Response of the mean global vegetation distribution to interannual climate variability

2007 ◽  
Vol 30 (7-8) ◽  
pp. 845-854 ◽  
Author(s):  
Michael Notaro
2019 ◽  
Vol 65 (251) ◽  
pp. 508-517 ◽  
Author(s):  
ANDREW G.O. MALONE ◽  
ALICE M. DOUGHTY ◽  
DOUGLAS R. MACAYEAL

ABSTRACTChanges in glacier length and extent are indicators of contemporary and archives of past climate changes, but this common climate proxy presents a challenge for inferring a climate signal. Modeling studies suggest that length fluctuations can occur due to interannual climate variability within an unchanging mean climate and that changes in interannual climate variability can also drive changes in average length. This paper quantifies the impacts of interannual climate variability on average glacier length and mass balance, using a flowline model coupled to a simplified mass-balance model. Results illustrate that changes in the magnitude of interannual temperature variability can non-linearly affect the mean glacier length through a mass-balance asymmetry between warm and cold years. This asymmetry is present in models where melt only initiates after a temperature threshold is crossed. Glaciers susceptible to this asymmetry can be identified based on the shape of their mass-balance profiles. The presence of mass-balance asymmetries in glaciological databases is evaluated, but current records are too short for high statistical resolving power. While the asymmetry in this study can affect the average length and mass-balance, its impacts are small, and paleoclimate interpretations from glacier-length changes are likely not notably influenced by this process.


2017 ◽  
Author(s):  
Chuanhao Wu ◽  
Bill X. Hu ◽  
Guoru Huang ◽  
Peng Wang ◽  
Kai Xu

Abstract. China has suffered some of the effects of global warming, and one of the potential implications of climate warming is the alteration of the temporal-spatial patterns of water resources. Based on the long-term (1960–2012) water budget data and climate projections from 28 Global Climate Models (GCMs) of the Coupled Model Intercomparison Project Phase 5 (CMIP5), this study investigated the responses of runoff (R) to historical and future climate variability in China at both grid and catchment scales using the Budyko-based elasticity method. Results show that there is a large spatial variation in precipitation (P) elasticity (from 1.2 to 3.3) and potential evaporation (PET) elasticity (from −2.3 to −0.2) across China. The P elasticity is larger in northeast and western China than in southern China, while the opposite occurs for PET elasticity. The catchment properties elasticity of R appears to have a strong non-linear relationship with the mean annual aridity index and tends to be more significant in more arid regions. For the period 1960–2012, the climate contribution to R ranges from −2.4 % a−1 to 3.3 % a−1 across China, with the negative contribution in the North China plain and the positive contribution in western China and some parts of the southwest. The results of climate projections indicate that although there is large uncertainty involved in the 28 GCMs, most project a consistent change in P (or PET) in China at the annual scale. For the period 2071–2100, the mean annual P will likely increase in most parts of China, especially the western regions, while the mean annual PET will likely increase in all of China, particularly the southern regions. Furthermore, greater increases are projected for higher emission scenarios. Overall, due to climate change, the arid regions and humid regions of China will likely become wetter and drier in the period 2071–2100, respectively (relative to the baseline 1971–2000).


2016 ◽  
Vol 29 (8) ◽  
pp. 2889-2905 ◽  
Author(s):  
Honghai Zhang ◽  
Amy Clement ◽  
Brian Medeiros

Abstract The meridional mode provides a source of predictability for the tropical climate variability and change on seasonal and longer time scales by transporting extratropical climate signals into the tropics. Previous research shows that the tropical imprint of the meridional mode is constrained by the interhemispheric asymmetry of the tropical mean climate state. In this study the constraint of the zonal asymmetry is investigated in an AGCM thermodynamically coupled with an aquaplanet slab ocean model. The strategy is to modify the zonal asymmetry of the mean climate state and examine the response of the meridional mode. Presented here are two simulations of different zonal asymmetries in the mean state. In the zonally symmetric case, the meridional mode operates throughout the subtropics but only becomes evident after removing a dominant global-scale eastward-propagating mode. In the zonally asymmetric case, the meridional mode operates only in regions where trade winds converge onto the equator and has an enlarged spatial scale due to the modified mean climate including cold sea surface and weak trade winds. In both simulations, the tropical imprint of the meridional mode is constrained by the north–south seasonal migration of the intertropical convergence zone. These results suggest that the meridional mode does not require the zonal asymmetry of the mean state but is intrinsic to the subtropical ocean–atmosphere coupled system with its characteristics subject to the mean climate state. The implication is that the internal climate variability needs to be assessed in the context of the mean climate state.


1999 ◽  
Vol 12 ◽  
pp. 145-152 ◽  
Author(s):  
I Amien ◽  
P Redjekiningrum ◽  
B Kartiwa ◽  
W Estiningtyas

2021 ◽  
pp. 1-46
Author(s):  
Lei Zhang ◽  
Weiqing Han ◽  
Kristopher B. Karnauskas ◽  
Yuanlong Li ◽  
Tomoki Tozuka

AbstractThe subtropical Indian Ocean Dipole (SIOD) and Ningaloo Niño are the two dominant modes of interannual climate variability in the subtropical South Indian Ocean. Observations show that the SIOD has been weakening in the recent decades, while Ningaloo Niño has been strengthening. In this study, we investigate the causes for such changes by analyzing climate model experiments using the NCAR Community Earth System Model version 1 (CESM1). Ensemble-mean results from CESM1 large-ensemble (CESM1-LE) suggest that the external forcing causes negligible changes in the amplitudes of the SIOD and Ningaloo Niño, suggesting a dominant role of internal climate variability. Meanwhile, results from CESM1 pacemaker experiments reveal that the observed changes in the two climate modes cannot be attributed to the effect of sea surface temperature anomalies (SSTA) in either the tropical Pacific or tropical Indian Oceans. By further comparing different ensemble members from the CESM1-LE, we find that a Warm Pool Dipole mode of decadal variability, with opposite SSTA in the southeast Indian Ocean and the western-central tropical Pacific Ocean plays an important role in driving the observed changes in the SIOD and Ningaloo Niño. These changes in the two climate modes have considerable impacts on precipitation and sea level variabilities in the South Indian Ocean region.


2021 ◽  
Author(s):  
Emilia Sanchez ◽  
Marta Martin Rey ◽  
Roland Seferian ◽  
Yeray Santana-Falcon

<p>The interannual climate variability in the Tropical Atlantic is mainly controlled by two air-sea coupled modes denoted as Meridional Mode (MM) and Equatorial Mode (EM). The MM, peaking in boreal spring, is characterized by an anomalous Sea Surface Temperature (SST) interhemispheric gradient associated with anomalous surface cross-equatorial winds blowing to the warmer hemisphere.  On the other hand, the positive phase of the EM exhibits an anomalous warming in the equatorial band and along the African coast, related to a weakening of the climatological trade winds. Both interannual modes illustrate significant SST and surface wind changes in the eastern boundary upwelling systems (EBUS) of the tropical Atlantic: the Senegal-Mauritanian and Angola-Benguela. The EBUS are characterized by wind-induced coastal upwelling of deep cold waters rich in nutrients supporting high primary productivity and an abundance of food resources. Hence, the physical or climate characteristics associated with the MM and EM may have a potential effect on marine organisms and ecosystems. The goal of this study is to understand the links between the main modes of tropical Atlantic variability and biogeochemical (BGC) variables such as oxygen, net primary production and ph. These are known to be the main drivers for marine ecosystems. Firstly we study the influence of MM and AM on the EBUS and how these links are represented by the coupled ESM CNRM-ESM2.1 against observations. Second, we use the ESM to investigate the links between the SST anomalies associated to MM and EM and the main BGC stressors mentioned above. For this purpose, a set of numerical experiments performed with CMIP6 climate models are used. This work is supported by the H2020 TRIATLAS project, whose main goal is to understand and evaluate the future evolution of living marine resources in the Atlantic Ocean.</p>


2006 ◽  
Vol 245 (1-2) ◽  
pp. 81-94 ◽  
Author(s):  
T BRACHERT ◽  
M REUTER ◽  
T FELIS ◽  
K KROEGER ◽  
G LOHMANN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document