Statistical analysis of inertial gravity wave parameters in the lower stratosphere over Northern China

2018 ◽  
Vol 52 (1-2) ◽  
pp. 563-575 ◽  
Author(s):  
Lei Chen ◽  
Jianchun Bian ◽  
Yi Liu ◽  
Zhixuan Bai ◽  
Shuai Qiao
2016 ◽  
Vol 60 (2) ◽  
pp. 328-340 ◽  
Author(s):  
ZhiXuan Bai ◽  
JianChun Bian ◽  
HongBin Chen ◽  
Lei Chen

2005 ◽  
Vol 62 (1) ◽  
pp. 125-142 ◽  
Author(s):  
Ling Wang ◽  
Marvin A. Geller ◽  
M. Joan Alexander

Abstract Five years (1998–2002) of U.S. high vertical resolution radiosonde data are analyzed to derive important gravity wave parameters, such as intrinsic frequencies, vertical and horizontal wavelengths, and vertical propagation directions in the lower stratosphere and troposphere. Intrinsic frequencies ω̂ increase with increasing latitude, with larger values in the troposphere. In the lower stratosphere, ω̂ is higher in winter than in summer, especially at mid- and high latitudes. Intrinsic frequencies divided by the Coriolis parameter f are ∼4 in the troposphere, and ∼2.4–3 in the lower stratosphere. The lower-stratospheric ω̂/f generally decreases weakly with increasing latitude. The latitudinal distributions of the lower-stratospheric ω̂/f are explained largely by the propagation effects. The seasonal variations of ω̂ in the lower stratosphere are found to be related to the variations of the background wind speeds. Dominant vertical wavelengths decrease with increasing latitude in the lower stratosphere, and maximize at midlatitudes (35°–40°N) in the troposphere. They are generally longer in winter than in summer. The variations of the dominant vertical wavelengths are found to be associated with the similar variations in gravity wave energies. Dominant horizontal wavelengths decrease with increasing latitude, with larger values in the lower stratosphere. Approximately 50% of the tropospheric gravity waves show upward energy propagation, whereas there is about 75% upward energy propagation in the lower stratosphere. The lower-stratospheric fraction of upward energy propagation is generally smaller in winter than in summer, especially at mid- and high latitudes. The seasonal variation of upward fraction is likely an artifice due to the analysis method, although a small part of it may be interpreted by the variations in background wind speeds. Results suggest that propagation effects are much more important than source variations for explaining the large-scale time-average properties of waves observed by radiosondes.


1997 ◽  
pp. 7-25 ◽  
Author(s):  
R. A. Vincent ◽  
S. J. Allen ◽  
S. D. Eckermann

2016 ◽  
Author(s):  
Fabrice Chane Ming ◽  
Damien Vignelles ◽  
Fabrice Jegou ◽  
Gwenael Berthet ◽  
Jean-Batiste Renard ◽  
...  

Abstract. Coupled balloon-borne observations of Light Optical Aerosol Counter (LOAC), M10 meteorological global positioning system (GPS) sondes, ozonesondes and GPS radio occultation data, are examined to identify gravity-wave (GW) induced fluctuations on tracer gases and on the vertical distribution of stratospheric aerosol concentrations during the 2013 ChArMEx (Chemistry-Aerosol Mediterranean Experiment) campaign. Observations reveal signatures of GWs with short vertical wavelengths less than 4 km in dynamical parameters and tracer constituents which are also correlated with the presence of thin layers of strong local enhancements of aerosol concentrations in the upper troposphere and the lower stratosphere. In particular, this is evident from a case study above Ile du Levant (43.02 °N, 6.46 °E) on 26–29 July 2013. Observations show a strong activity of dominant mesoscale inertia GWs with horizontal and vertical wavelengths of 370–510 km and 2–3 km respectively, and periods of 10–13 h propagating southward at altitudes of 13–20 km and eastward above 20 km during 27–28 July which is also captured by the European Center for Medium range Weather Forecasting (ECMWF) analyses. Ray-tracing experiments indicate the jet-front system to be the source of observed GWs. Simulated vertical profiles of dynamical parameters with large stratospheric vertical wind maximum oscillations ± 40 mms−1 are produced for the dominant mesoscale GW using the simplified linear GW theory. Parcel advection method reveals signatures of GWs in the ozone mixing ratio and the specific humidity. Simulated vertical wind perturbations of the dominant GW and small-scale perturbations of aerosol concentration (aerosol size of 0.2–0.7 μm) are in phase in the lower stratosphere. Present results support the importance of vertical wind perturbations in the GW-aerosol relation. The observed mesoscale GW induces a strong modulation of the amplitude of tracer gases and the stratospheric aerosol background.


Radio Science ◽  
2018 ◽  
Vol 53 (11) ◽  
pp. 1356-1367 ◽  
Author(s):  
Gargi Rakshit ◽  
Soumyajyoti Jana ◽  
Animesh Maitra

Author(s):  
Graeme Marlton ◽  
Andrew Charlton-Perez ◽  
Giles Harrison ◽  
Christopher Lee

2005 ◽  
Vol 23 (3) ◽  
pp. 665-673 ◽  
Author(s):  
S. D. Zhang ◽  
F. Yi

Abstract. Several works concerning the dynamical and thermal structures and inertial gravity wave activities in the troposphere and lower stratosphere (TLS) from the radiosonde observation have been reported before, but these works were concentrated on either equatorial or polar regions. In this paper, background atmosphere and gravity wave activities in the TLS over Wuhan (30° N, 114° E) (a medium latitudinal region) were statistically studied by using the data from radiosonde observations on a twice daily basis at 08:00 and 20:00 LT in the period between 2000 and 2002. The monthly-averaged temperature and horizontal winds exhibit the essential dynamic and thermal structures of the background atmosphere. For avoiding the extreme values of background winds and temperature in the height range of 11-18km, we studied gravity waves, respectively, in two separate height regions, one is from ground surface to 10km (lower part), and the other is within 18-25km (upper part). In total, 791 and 1165 quasi-monochromatic inertial gravity waves were extracted from our data set for the lower and upper parts, respectively. The gravity wave parameters (intrinsic frequencies, amplitudes, wavelengths, intrinsic phase velocities and wave energies) are calculated and statistically studied. The statistical results revealed that in the lower part, there were 49.4% of gravity waves propagating upward, and the percentage was 76.4% in the upper part. Moreover, the average wave amplitudes and energies are less than those at the lower latitudinal regions, which indicates that the gravity wave parameters have a latitudinal dependence. The correlated temporal evolution of the monthly-averaged wave energies in the lower and upper parts and a subsequent quantitative analysis strongly suggested that at the observation site, dynamical instability (strong wind shear) induced by the tropospheric jet is the main excitation source of inertial gravity waves in the TLS.


SOLA ◽  
2005 ◽  
Vol 1 ◽  
pp. 189-192 ◽  
Author(s):  
Shingo Watanabe ◽  
Tatsuya Nagashima ◽  
Seita Emori

1988 ◽  
Vol 1 (21) ◽  
pp. 6
Author(s):  
M.D. Miles ◽  
E.R. Funke

A numerical comparison study is carried out on a variety of methods for synthesizing pseudo-random Gaussian wave records for laboratory wave generation. Three nonharmonic superposition methods and three time domain filtering procedures are compared to a harmonic FFT technique. The synthesis methods are evaluated on the basis of a statistical analysis of 16 standard wave parameters obtained from a set of 200 wave records. Second order group-bounded long wave components are also investigated.


Sign in / Sign up

Export Citation Format

Share Document