scholarly journals Phenotypic diversity of genetic Creutzfeldt–Jakob disease: a histo-molecular-based classification

Author(s):  
Simone Baiardi ◽  
Marcello Rossi ◽  
Angela Mammana ◽  
Brian S. Appleby ◽  
Marcelo A. Barria ◽  
...  

AbstractThe current classification of sporadic Creutzfeldt–Jakob disease (sCJD) includes six major clinicopathological subtypes defined by the physicochemical properties of the protease-resistant core of the pathologic prion protein (PrPSc), defining two major PrPSc types (i.e., 1 and 2), and the methionine (M)/valine (V) polymorphic codon 129 of the prion protein gene (PRNP). How these sCJD subtypes relate to the well-documented phenotypic heterogeneity of genetic CJD (gCJD) is not fully understood. We analyzed molecular and phenotypic features in 208 individuals affected by gCJD, carrying 17 different mutations, and compared them with those of a large series of sCJD cases. We identified six major groups of gCJD based on the combination PrPSc type and codon 129 genotype on PRNP mutated allele, each showing distinctive histopathological characteristics, irrespectively of the PRNP associated mutation. Five gCJD groups, named M1, M2C, M2T, V1, and V2, largely reproduced those previously described in sCJD subtypes. The sixth group shared phenotypic traits with the V2 group and was only detected in patients carrying the E200K-129M haplotype in association with a PrPSc type of intermediate size (“i”) between type 1 and type 2. Additional mutation-specific effects involved the pattern of PrP deposition (e.g., a “thickened” synaptic pattern in E200K carriers, cerebellar “stripe-like linear granular deposits” in those with insertion mutations, and intraneuronal globular dots in E200K-V2 or -M”i”). A few isolated cases linked to rare PRNP haplotypes (e.g., T183A-129M), showed atypical phenotypic features, which prevented their classification into the six major groups. The phenotypic variability of gCJD is mostly consistent with that previously found in sCJD. As in sCJD, the codon 129 genotype and physicochemical properties of PrPSc significantly correlated with the phenotypic variability of gCJD. The most common mutations linked to CJD appear to have a variable and overall less significant effect on the disease phenotype, but they significantly influence disease susceptibility often in a strain-specific manner. The criteria currently used for sCJD subtypes can be expanded and adapted to gCJD to provide an updated classification of the disease with a molecular basis.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Diego Iacono ◽  
Sergio Ferrari ◽  
Matteo Gelati ◽  
Gianluigi Zanusso ◽  
Sara Mariotto ◽  
...  

Sporadic Creutzfeldt-Jakob disease (sCJD), the most frequent human prion disorder, is characterized by remarkable phenotypic variability, which is influenced by the conformation of the pathologic prion protein and the methionine/valine polymorphic codon 129 of the prion protein gene. While the etiology of sCJD remains unknown, it has been hypothesized that environmental exposure to prions might occur through conjunctival/mucosal contact, oral ingestion, inhalation, or simultaneous involvement of the olfactory and enteric systems. We studied 21 subjects with definite sCJD to assess neuropathological involvement of the dorsal motor nucleus of the vagus and other medullary nuclei and to evaluate possible associations with codon 129 genotype and prion protein conformation. The present data show that prion protein deposition was detected in medullary nuclei of distinct sCJD subtypes, either valine homozygous or heterozygous at codon 129. These findings suggest that an “environmental exposure” might occur, supporting the hypothesis that external sources of contamination could contribute to sCJD in susceptible hosts. Furthermore, these novel data could shed the light on possible causes of sCJD through a “triple match” hypothesis that identify environmental exposure, host genotype, and direct exposure of specific anatomical regions as possible pathogenetic factors.


2021 ◽  
Vol 22 (4) ◽  
pp. 2099
Author(s):  
Nikol Jankovska ◽  
Tomas Olejar ◽  
Radoslav Matej

Alzheimer’s disease (AD) and sporadic Creutzfeldt–Jakob disease (sCJD) are both characterized by extracellular pathologically conformed aggregates of amyloid proteins—amyloid β-protein (Aβ) and prion protein (PrPSc), respectively. To investigate the potential morphological colocalization of Aβ and PrPSc aggregates, we examined the hippocampal regions (archicortex and neocortex) of 20 subjects with confirmed comorbid AD and sCJD using neurohistopathological analyses, immunohistochemical methods, and confocal fluorescent microscopy. Our data showed that extracellular Aβ and PrPSc aggregates tended to be, in most cases, located separately, and “compound” plaques were relatively rare. We observed PrPSc plaque-like structures in the periphery of the non-compact parts of Aβ plaques, as well as in tau protein-positive dystrophic structures. The AD ABC score according to the NIA-Alzheimer’s association guidelines, and prion protein subtype with codon 129 methionine–valine (M/V) polymorphisms in sCJD, while representing key characteristics of these diseases, did not correlate with the morphology of the Aβ/PrPSc co-aggregates. However, our data showed that PrPSc aggregation could dominate during co-aggregation with non-compact Aβ in the periphery of Aβ plaques.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maxime Bélondrade ◽  
Simon Nicot ◽  
Charly Mayran ◽  
Lilian Bruyere-Ostells ◽  
Florian Almela ◽  
...  

AbstractUnlike variant Creutzfeldt–Jakob disease prions, sporadic Creutzfeldt–Jakob disease prions have been shown to be difficult to amplify in vitro by protein misfolding cyclic amplification (PMCA). We assessed PMCA of pathological prion protein (PrPTSE) from 14 human sCJD brain samples in 3 substrates: 2 from transgenic mice expressing human prion protein (PrP) with either methionine (M) or valine (V) at position 129, and 1 from bank voles. Brain extracts representing the 5 major clinicopathological sCJD subtypes (MM1/MV1, MM2, MV2, VV1, and VV2) all triggered seeded PrPTSE amplification during serial PMCA with strong seed- and substrate-dependence. Remarkably, bank vole PrP substrate allowed the propagation of all sCJD subtypes with preservation of the initial molecular PrPTSE type. In contrast, PMCA in human PrP substrates was accompanied by a PrPTSE molecular shift during heterologous (M/V129) PMCA reactions, with increased permissiveness of V129 PrP substrate to in vitro sCJD prion amplification compared to M129 PrP substrate. Combining PMCA amplification sensitivities with PrPTSE electrophoretic profiles obtained in the different substrates confirmed the classification of 4 distinct major sCJD prion strains (M1, M2, V1, and V2). Finally, the level of sensitivity required to detect VV2 sCJD prions in cerebrospinal fluid was achieved.


2008 ◽  
Vol 363 (1510) ◽  
pp. 3685-3687 ◽  
Author(s):  
Catriona A McLean

A comparison of the pathological profiles of two spongiform encephalopathies with a similar presumptive route of infection was performed. Archival kuru and recent variant Creutzfeldt–Jakob disease (vCJD) cases reveal distinct lesional differences, particularly with respect to prion protein, suggesting that the strain of agent is important in determining the phenotype. Genotype analysis of the polymorphism on codon 129 reveals (in conjunction with updated information from more kuru cases) that all three genotypes (VV, MV and MM (where M is methionine and V is valine)) are detected in kuru with some preference for MM homozygosity. The presence of valine does not therefore appear to determine peripheral selection of PrP CJD . vCJD remains restricted to date to MM homozygosity on codon 129. It remains to be determined whether this genotype is dictating a shorter incubation period.


2013 ◽  
Vol 71 (7) ◽  
pp. 423-427 ◽  
Author(s):  
Jerusa Smid ◽  
Michele Christine Landemberger ◽  
Valéria Santoro Bahia ◽  
Vilma Regina Martins ◽  
Ricardo Nitrini

Interaction of prion protein and amyloid-b oligomers has been demonstrated recently. Homozygosity at prion protein gene (PRNP) codon 129 is associated with higher risk for Creutzfeldt-Jakob disease. This polymorphism has been addressed as a possible risk factor in Alzheimer disease (AD).ObjectiveTo describe the association between codon 129 polymorphisms and AD.MethodsWe investigated the association of codon 129 polymorphism of PRNP in 99 AD patients and 111 controls, and the association between this polymorphism and cognitive performance. Other polymorphisms of PRNP and additive effect of apolipoprotein E gene (ApoE) were evaluated.ResultsCodon 129 genotype distribution in AD 45.5% methionine (MM), 42.2% methionine valine (MV), 12.1% valine (VV); and 39.6% MM, 50.5% MV, 9.9% VV among controls (p>0.05). There were no differences of cognitive performance concerning codon 129. Stratification according to ApoE genotype did not reveal difference between groups.ConclusionCodon 129 polymorphism is not a risk factor for AD in Brazilian patients.


2015 ◽  
Vol 89 (7) ◽  
pp. 3939-3946 ◽  
Author(s):  
Atsushi Kobayashi ◽  
Piero Parchi ◽  
Masahito Yamada ◽  
Paul Brown ◽  
Daniela Saverioni ◽  
...  

ABSTRACTThe genotype at polymorphic codon 129 of thePRNPgene has a profound influence on both phenotypic expression and prion strain susceptibility in humans. For example, while the most common sporadic Creutzfeldt-Jakob disease (CJD) subtype, sporadic CJD-MM1 (M1 strain), induces a single phenotype after experimental transmission regardless of the codon 129 genotype of the recipient animal, the phenotype elicited by sporadic CJD-VV2 (V2 strain), the second most common subtype, varies according to the host codon 129 genotype. In particular, the propagation of the V2 strain in codon 129 methionine homozygotes has been linked only to acquired forms of CJD such as plaque-type dura mater graft-associated CJD (dCJD), a subgroup of iatrogenic CJD with distinctive phenotypic features, but has never been observed in sporadic CJD cases. In the present report, we describe atypical CJD cases carrying codon 129 methionine homozygosity, in a neurosurgeon and in a patient with a medical history of neurosurgery without dural grafting, showing the distinctive phenotypic features and transmission properties of plaque-type dCJD. These findings raise the possibility that the two cases, previously thought to represent sporadic CJD, might actually represent acquired CJD caused by infection with the V2 strain. Thus, careful analyses of phenotypic features and transmission properties in atypical cases may be useful to distinguish acquired from sporadic cases of CJD.IMPORTANCESusceptibility to and phenotypic expression of Creutzfeldt-Jakob disease (CJD) depend on both the prion strain and genotype at polymorphic codon 129 of thePRNPgene. For example, propagation of the second most common sporadic CJD strain (V2 strain) into codon 129 methionine homozygotes has been linked to plaque-type dura mater graft-associated CJD (dCJD), a subgroup of iatrogenic CJD with distinctive phenotypic features, but has never been observed in sporadic CJD. In the present report, we describe atypical CJD cases in a neurosurgeon and in a patient with a medical history of neurosurgery without dural grafting, showing the distinctive phenotypic features and transmission properties of plaque-type dCJD. These findings raise the possibility that the two cases, previously considered to represent sporadic CJD, might actually represent acquired CJD caused by infection with the V2 strain.


2016 ◽  
Vol 90 (14) ◽  
pp. 6244-6254 ◽  
Author(s):  
Maura Cescatti ◽  
Daniela Saverioni ◽  
Sabina Capellari ◽  
Fabrizio Tagliavini ◽  
Tetsuyuki Kitamoto ◽  
...  

ABSTRACTThe wide phenotypic variability of prion diseases is thought to depend on the interaction of a host genotype with prion strains that have self-perpetuating biological properties enciphered in distinct conformations of the misfolded prion protein PrPSc. This concept is largely based on indirect approaches studying the effect of proteases or denaturing agents on the physicochemical properties of PrPScaggregates. Furthermore, most data come from studies on rodent-adapted prion strains, making current understanding of the molecular basis of strains and phenotypic variability in naturally occurring diseases, especially in humans, more limited. To fill this gap, we studied the effects of guanidine hydrochloride (GdnHCl) and heating on PrPScaggregates extracted from 60 sporadic Creutzfeldt-Jakob disease (CJD) and 6 variant CJD brains. While denaturation curves obtained after exposure of PrPScto increasing GdnHCl concentrations showed similar profiles among the 7 CJD types analyzed, PrPScexposure to increasing temperature revealed significantly different and type-specific responses. In particular, MM1 and VV2, the most prevalent and fast-replicating CJD types, showed stable and highly resistant PrPScaggregates, whereas VV1, a rare and slowly propagating type, revealed unstable aggregates that easily dissolved at low temperature. Taken together, our results indicate that the molecular interactions mediating the aggregation state of PrPSc, possibly enciphering strain diversity, are differently targeted by GdnHCl, temperature, and proteases. Furthermore, the detected positive correlation between the thermostability of PrPScaggregates and disease transmission efficiency makes inconsistent the proposed hypothesis that a decrease in conformational stability of prions results in an increase in their replication efficiency.IMPORTANCEPrion strains are defined as infectious isolates propagating distinctive phenotypic traits after transmission to syngeneic hosts. Although the molecular basis of prion strains is not fully understood, it is largely accepted that variations in prion protein conformation drive the molecular changes leading to the different phenotypes. In this study, we exposed abnormal prion protein aggregates encompassing the spectrum of human prion strains to both guanidine hydrochloride and thermal unfolding. Remarkably, while exposure to increasing temperature revealed significant strain-specific differences in the denaturation profile of the protein, treatment with guanidine hydrochloride did not. The findings suggest that thermal and chemical denaturation perturb the structure of prion protein aggregates differently. Moreover, since the most thermostable prion protein types were those associated with the most prevalent phenotypes and most rapidly and efficiently transmitting strains, the results suggest a direct correlation between strain replication efficiency and the thermostability of prion protein aggregates.


1999 ◽  
Vol 67 (5) ◽  
pp. 671-674 ◽  
Author(s):  
B. B Worrall ◽  
S. T Herman ◽  
S. Capellari ◽  
T. Lynch ◽  
S. Chin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document