Stem-bone contact patterns of a long straight tapered uncemented stem for primary THA

Author(s):  
Kyosuke Kobayashi ◽  
Makoto Osaki ◽  
Kenichi Kidera ◽  
Tarik Ait-Si-Selmi ◽  
Sonia Ramos-Pascual ◽  
...  
2020 ◽  
Author(s):  
Zachary McCarthy ◽  
Yanyu Xiao ◽  
Francesca Scarabel ◽  
Biao Tang ◽  
Nicola Luigi Bragazzi ◽  
...  

2020 ◽  
Vol 41 (S1) ◽  
pp. s12-s12
Author(s):  
D. M. Hasibul Hasan ◽  
Philip Polgreen ◽  
Alberto Segre ◽  
Jacob Simmering ◽  
Sriram Pemmaraju

Background: Simulations based on models of healthcare worker (HCW) mobility and contact patterns with patients provide a key tool for understanding spread of healthcare-acquired infections (HAIs). However, simulations suffer from lack of accurate model parameters. This research uses Microsoft Kinect cameras placed in a patient room in the medical intensive care unit (MICU) at the University of Iowa Hospitals and Clinics (UIHC) to obtain reliable distributions of HCW visit length and time spent by HCWs near a patient. These data can inform modeling efforts for understanding HAI spread. Methods: Three Kinect cameras (left, right, and door cameras) were placed in a patient room to track the human body (ie, left/right hands and head) at 30 frames per second. The results reported here are based on 7 randomly selected days from a total of 308 observation days. Each tracked body may have multiple raw segments over the 2 camera regions, which we “stitch” up by matching features (eg, direction, velocity, etc), to obtain complete trajectories. Due to camera noise, in a substantial fraction of the frames bodies display unnatural characteristics including frequent and rapid directional and velocity change. We use unsupervised learning techniques to identify such “ghost” frames and we remove from our analysis bodies that have 20% or more “ghost” frames. Results: The heat map of hand positions (Fig. 1) shows that high-frequency locations are clustered around the bed and more to the patient’s right in accordance with the general medical practice of performing patient exams from their right. HCW visit frequency per hour (mean, 6.952; SD, 2.855) has 2 peaks, 1 during morning shift and 1 during the afternoon shift, with a distinct decrease after midnight. Figure 2 shows visit length (in minutes) distribution (mean, 1.570; SD, 2.679) being dominated by “check in visits” of <30 seconds. HCWs do not spend much time at touching distance from patients during short-length visits, and the fraction of time spent near the patient’s bed seems to increase with visit length up to a point. Conclusions: Using fine-grained data, this research extracts distributions of these critical parameters of HCW–patient interactions: (1) HCW visit length, (2) HCW visit frequency as a function of time of day, and (3) time spent by HCW within touching distance of patient as a function of visit length. To the best of our knowledge, we provide the first reliable estimates of these parameters.Funding: NoneDisclosures: None


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Charlotte Warembourg ◽  
Guillaume Fournié ◽  
Mahamat Fayiz Abakar ◽  
Danilo Alvarez ◽  
Monica Berger-González ◽  
...  

AbstractFree roaming domestic dogs (FRDD) are the main vectors for rabies transmission to humans worldwide. To eradicate rabies from a dog population, current recommendations focus on random vaccination with at least 70% coverage. Studies suggest that targeting high-risk subpopulations could reduce the required vaccination coverage, and increase the likelihood of success of elimination campaigns. The centrality of a dog in a contact network can be used as a measure of its potential contribution to disease transmission. Our objectives were to investigate social networks of FRDD in eleven study sites in Chad, Guatemala, Indonesia and Uganda, and to identify characteristics of dogs, and their owners, associated with their centrality in the networks. In all study sites, networks had small-world properties and right-skewed degree distributions, suggesting that vaccinating highly connected dogs would be more effective than random vaccination. Dogs were more connected in rural than urban settings, and the likelihood of contacts was negatively correlated with the distance between dogs’ households. While heterogeneity in dog's connectedness was observed in all networks, factors predicting centrality and likelihood of contacts varied across networks and countries. We therefore hypothesize that the investigated dog and owner characteristics resulted in different contact patterns depending on the social, cultural and economic context. We suggest to invest into understanding of the sociocultural structures impacting dog ownership and thus driving dog ecology, a requirement to assess the potential of targeted vaccination in dog populations.


2021 ◽  
Vol 74 ◽  
pp. 43-49
Author(s):  
Shelemia Nyamuryekung'e ◽  
Andres F. Cibils ◽  
Richard E. Estell ◽  
Matthew McIntosh ◽  
Dawn VanLeeuwen ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
G. Cencetti ◽  
G. Santin ◽  
A. Longa ◽  
E. Pigani ◽  
A. Barrat ◽  
...  

AbstractDigital contact tracing is a relevant tool to control infectious disease outbreaks, including the COVID-19 epidemic. Early work evaluating digital contact tracing omitted important features and heterogeneities of real-world contact patterns influencing contagion dynamics. We fill this gap with a modeling framework informed by empirical high-resolution contact data to analyze the impact of digital contact tracing in the COVID-19 pandemic. We investigate how well contact tracing apps, coupled with the quarantine of identified contacts, can mitigate the spread in real environments. We find that restrictive policies are more effective in containing the epidemic but come at the cost of unnecessary large-scale quarantines. Policy evaluation through their efficiency and cost results in optimized solutions which only consider contacts longer than 15–20 minutes and closer than 2–3 meters to be at risk. Our results show that isolation and tracing can help control re-emerging outbreaks when some conditions are met: (i) a reduction of the reproductive number through masks and physical distance; (ii) a low-delay isolation of infected individuals; (iii) a high compliance. Finally, we observe the inefficacy of a less privacy-preserving tracing involving second order contacts. Our results may inform digital contact tracing efforts currently being implemented across several countries worldwide.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jackie Kleynhans ◽  
Stefano Tempia ◽  
Meredith L. McMorrow ◽  
Anne von Gottberg ◽  
Neil A. Martinson ◽  
...  

Abstract Background Describing contact patterns is crucial to understanding infectious disease transmission dynamics and guiding targeted transmission mitigation interventions. Data on contact patterns in Africa, especially South Africa, are limited. We measured and compared contact patterns in a rural and urban community, South Africa. We assessed participant and contact characteristics associated with differences in contact rates. Methods We conducted a cross-sectional study nested in a prospective household cohort study. We interviewed participants to collect information on persons in contact with for one day. We described self-reported contact rates as median number people contacted per day, assessed differences in contact rates based on participant characteristics using quantile regression, and used a Poisson model to assess differences in contact rates based on contact characteristics within age groups. We also calculated cumulative person hours in contact within age groups at different locations. Results We conducted 535 interviews (269 rural, 266 urban), with 17,252 contacts reported. The overall contact rate was 14 (interquartile range (IQR) 9–33) contacts per day. Those ≤18 years had higher contact rates at the rural site (coefficient 17, 95% confidence interval (95%CI) 10–23) compared to the urban site, for those aged 14–18 years (13, 95%CI 3–23) compared to < 7 years. No differences were observed for adults. There was a strong age-based mixing, with age groups interacting more with similar age groups, but also interaction of participants of all ages with adults. Children aged 14–18 years had the highest cumulative person hours in contact (116.3 rural and 76.4 urban). Conclusions Age played an important role in the number and duration of contact events, with children at the rural site having almost double the contact rate compared to the urban site. These contact rates can be utilized in mathematical models to assess transmission dynamics of infectious diseases in similar communities.


Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 358
Author(s):  
Javier Aragoneses ◽  
Ana Suárez ◽  
Nansi López-Valverde ◽  
Francisco Martínez-Martínez ◽  
Juan Manuel Aragoneses

The aim of this study was to evaluate the effect of implant surface treatment with carboxyethylphosphonic acid and fibroblast growth factor 2 on the bone–implant interface during the osseointegration period in vivo using an animal model. The present research was carried out in six minipigs, in whose left tibia implants were inserted as follows: eight implants with a standard surface treatment, for the control group, and eight implants with a surface treatment of carboxyethylphosphonic acid and immobilization of FGF-2, for the test group. At 4 weeks after the insertion of the implants, the animals were sacrificed for the histomorphometric analysis of the samples. The means of the results for the implant–bone contact variable (BIC) were 46.39 ± 17.49% for the test group and 34.00 ± 9.92% for the control group; the difference was not statistically significant. For the corrected implant–bone contact variable (BICc), the mean value of the test group was 60.48 ± 18.11%, and that for the control group, 43.08 ± 10.77%; the difference was statistically significant (p-value = 0.035). The new bone formation (BV/TV) showed average results of 27.28 ± 3.88% for the test group and 26.63 ± 7.90% for the control group, meaning that the differences were not statistically significant (p-value = 0.839). Regarding the bone density at the interthread level (BAI/TA), the mean value of the test group was 32.27 ± 6.70%, and that of the control group was 32.91 ± 7.76%, with a p-value of 0.863, while for the peri-implant density (BAP/TA), the mean value of the test group was 44.96 ± 7.55%, and that for the control group was 44.80 ± 8.68%, without a significant difference between the groups. The current research only found a significant difference for the bone–implant contact at the cortical level; therefore, it could be considered that FGF-2 acts on the mineralization of bone tissue. The application of carboxyethylphosphonic acid on the surface of implants can be considered a promising alternative as a biomimetic coating for the immobilization of FGF-2. Despite no differences in the new bone formation around the implants or in the interthread or peri-implant bone density being detected, the biofunctionalization of the implant surface with FGF-2 accelerates the mineralization of the bone–implant interface at the cortical level, thereby reducing the osseointegration period.


1988 ◽  
Vol 106 (3) ◽  
pp. 747-760 ◽  
Author(s):  
G Rinnerthaler ◽  
B Geiger ◽  
J V Small

We have correlated the motility of the leading edge of fibroblasts, monitored by phase-contrast cinematography, with the relative distributions of several cytoskeletal elements (vinculin, tubulin, and actin) as well as with the contact patterns determined by interference reflection microscopy. This analysis has revealed the involvement of both ruffles and microspikes, as well as microtubules in the initiation of focal contact formation. Nascent vinculin sites within the leading edge or at its base, taken as primordial cell-substrate contacts, were invariably colocalized with sites that showed a history of transient, prolonged, or cyclic ruffling activity. Extended microspike structures, often preceded the formation of ruffles. Immunofluorescent labeling indicated that some of these primordial contacts were in close apposition to the ends of microtubules that penetrated into the leading edge. By fluorescence and electron microscopy short bundles of actin filaments found at the base of the leading edge were identified as presumptive, primordial contacts. It is concluded that ruffles and microspikes, either independently or in combination, initiate and mark the sites for future contact. Plaque proteins then accumulate (within 10-30 s) at the contract site and, beneath ruffles, induce localized bundling of actin filaments. We propose that all primordial contacts support traction for leading edge protrusion but that only some persist long enough to nucleate stress fiber assembly. Microtubules are postulated as the elements that select, stabilize, and potentiate the formation of these latter, long-lived contacts.


1998 ◽  
Vol 7 (4) ◽  
pp. 381-388 ◽  
Author(s):  
Jon J.P. Warner ◽  
Mark K. Bowen ◽  
Xiang-hua Deng ◽  
Jo A. Hannafin ◽  
Stephen P. Arnoczky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document