Association between basal, squamous cell carcinomas, dysplastic nevi and myotonic muscular dystrophy indicates an important role of RNA-binding proteins in development of human skin cancer

2009 ◽  
Vol 302 (3) ◽  
pp. 169-170 ◽  
Author(s):  
Alexander Zemtsov
2019 ◽  
Vol 19 (4) ◽  
pp. 255-263 ◽  
Author(s):  
Yuangang Wu ◽  
Xiaoxi Lu ◽  
Bin Shen ◽  
Yi Zeng

Background: Osteoarthritis (OA) is a disease characterized by progressive degeneration, joint hyperplasia, narrowing of joint spaces, and extracellular matrix metabolism. Recent studies have shown that the pathogenesis of OA may be related to non-coding RNA, and its pathological mechanism may be an effective way to reduce OA. Objective: The purpose of this review was to investigate the recent progress of miRNA, long noncoding RNA (lncRNA) and circular RNA (circRNA) in gene therapy of OA, discussing the effects of this RNA on gene expression, inflammatory reaction, apoptosis and extracellular matrix in OA. Methods: The following electronic databases were searched, including PubMed, EMBASE, Web of Science, and the Cochrane Library, for published studies involving the miRNA, lncRNA, and circRNA in OA. The outcomes included the gene expression, inflammatory reaction, apoptosis, and extracellular matrix. Results and Discussion: With the development of technology, miRNA, lncRNA, and circRNA have been found in many diseases. More importantly, recent studies have found that RNA interacts with RNA-binding proteins to regulate gene transcription and protein translation, and is involved in various pathological processes of OA, thus becoming a potential therapy for OA. Conclusion: In this paper, we briefly introduced the role of miRNA, lncRNA, and circRNA in the occurrence and development of OA and as a new target for gene therapy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xuechai Chen ◽  
Jianan Wang ◽  
Muhammad Tahir ◽  
Fangfang Zhang ◽  
Yuanyuan Ran ◽  
...  

AbstractAutophagy is a conserved degradation process crucial to maintaining the primary function of cellular and organismal metabolism. Impaired autophagy could develop numerous diseases, including cancer, cardiomyopathy, neurodegenerative disorders, and aging. N6-methyladenosine (m6A) is the most common RNA modification in eukaryotic cells, and the fate of m6A modified transcripts is controlled by m6A RNA binding proteins. m6A modification influences mRNA alternative splicing, stability, translation, and subcellular localization. Intriguingly, recent studies show that m6A RNA methylation could alter the expression of essential autophagy-related (ATG) genes and influence the autophagy function. Thus, both m6A modification and autophagy could play a crucial role in the onset and progression of various human diseases. In this review, we summarize the latest studies describing the impact of m6A modification in autophagy regulation and discuss the role of m6A modification-autophagy axis in different human diseases, including obesity, heart disease, azoospermatism or oligospermatism, intervertebral disc degeneration, and cancer. The comprehensive understanding of the m6A modification and autophagy interplay may help in interpreting their impact on human diseases and may aid in devising future therapeutic strategies.


2013 ◽  
Vol 9 ◽  
pp. P847-P847
Author(s):  
Benjamin Wolozin ◽  
Tara Vanderweyde ◽  
Liqun Liu-Yesucevitz ◽  
Alpaslan Dedeoglu ◽  
Leonard Petrucelli ◽  
...  

2018 ◽  
Vol 67 (7) ◽  
pp. 1147-1157 ◽  
Author(s):  
Corinne Bauer ◽  
Ashik Ahmed Abdul Pari ◽  
Viktor Umansky ◽  
Jochen Utikal ◽  
Petra Boukamp ◽  
...  

2004 ◽  
Vol 379 (2) ◽  
pp. 283-289 ◽  
Author(s):  
Marie-Chloé BOULANGER ◽  
Tina Branscombe MIRANDA ◽  
Steven CLARKE ◽  
Marco di FRUSCIO ◽  
Beat SUTER ◽  
...  

The role of arginine methylation in Drosophila melanogaster is unknown. We identified a family of nine PRMTs (protein arginine methyltransferases) by sequence homology with mammalian arginine methyltransferases, which we have named DART1 to DART9 (Drosophilaarginine methyltransferases 1–9). In keeping with the mammalian PRMT nomenclature, DART1, DART4, DART5 and DART7 are the putative homologues of PRMT1, PRMT4, PRMT5 and PRMT7. Other DART family members have a closer resemblance to PRMT1, but do not have identifiable homologues. All nine genes are expressed in Drosophila at various developmental stages. DART1 and DART4 have arginine methyltransferase activity towards substrates, including histones and RNA-binding proteins. Amino acid analysis of the methylated arginine residues confirmed that both DART1 and DART4 catalyse the formation of asymmetrical dimethylated arginine residues and they are type I arginine methyltransferases. The presence of PRMTs in D. melanogaster suggest that flies are a suitable genetic system to study arginine methylation.


2021 ◽  
Author(s):  
Jennifer Gantchev ◽  
Amelia Martinez Villarreal ◽  
Brandon Ramchatesingh ◽  
Ivan V. Litvinov

2012 ◽  
Vol 87 (2) ◽  
pp. 212-219 ◽  
Author(s):  
Pedro Andrade ◽  
Maria Manuel Brites ◽  
Ricardo Vieira ◽  
Angelina Mariano ◽  
José Pedro Reis ◽  
...  

BACKGROUND: Non-melanoma skin cancer, a common designation for both basal cell carcinomas and squamous cell carcinomas, is the most frequent malignant skin neoplasm. OBJECTIVE: Epidemiologic characterization of the population with Non-melanoma skin cancer. METHODS: Retrospective analysis of all patients diagnosed with Non-melanoma skin cancer based on histopathologic analysis of all incisional or excisional skin biopsies performed between 2004 and 2008 in a Department of Dermatology. RESULTS: A total of 3075 Non-melanoma skin cancers were identified, representing 88% of all malignant skin neoplasms (n=3493) diagnosed in the same period. Of those, 68,3% were basal cell carcinomas. Most Non-melanoma skin cancer patients were female and over 60 years old. Of all Non-melanoma skin cancer, 81,7% (n=1443) were located in sun-exposed skin, and represented 95,1% of malignant skin neoplasms in sun-exposed skin. Non-melanoma skin cancer was the most frequent malignant skin neoplasm in most topographic locations, except for abdomen and pelvis - over 95% of all malignant skin neoplasms in the face, neck and scalp were Non-melanoma skin cancer. Basal cell carcinomas were clearly predominant in all locations, except in upper and lower limbs, lower lip and genitals, where squamous cell carcinomas represented respectively 77,7%, 77,4%, 94,7% and 95,3% of the Non-melanoma skin cancers. CONCLUSION: Being the most common skin cancer, Non-melanoma skin cancer should be under constant surveillance, in order to monitor its epidemiologic dynamics, the efficiency of preventive measures and the adaptation of the healthcare resources.


2021 ◽  
Vol 15 ◽  
Author(s):  
Benjamin L. Zaepfel ◽  
Jeffrey D. Rothstein

Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease that affects upper and lower motor neurons. Familial ALS accounts for a small subset of cases (<10–15%) and is caused by dominant mutations in one of more than 10 known genes. Multiple genes have been causally or pathologically linked to both ALS and frontotemporal dementia (FTD). Many of these genes encode RNA-binding proteins, so the role of dysregulated RNA metabolism in neurodegeneration is being actively investigated. In addition to defects in RNA metabolism, recent studies provide emerging evidence into how RNA itself can contribute to the degeneration of both motor and cortical neurons. In this review, we discuss the roles of altered RNA metabolism and RNA-mediated toxicity in the context of TARDBP, FUS, and C9ORF72 mutations. Specifically, we focus on recent studies that describe toxic RNA as the potential initiator of disease, disease-associated defects in specific RNA metabolism pathways, as well as how RNA-based approaches can be used as potential therapies. Altogether, we highlight the importance of RNA-based investigations into the molecular progression of ALS, as well as the need for RNA-dependent structural studies of disease-linked RNA-binding proteins to identify clear therapeutic targets.


Author(s):  
Bhawana Maurya ◽  
Satya Surabhi ◽  
Pranjali Pandey ◽  
Ashim Mukherjee ◽  
Mousumi Mutsuddi

Sign in / Sign up

Export Citation Format

Share Document