scholarly journals The physiological effects of low-intensity neuromuscular electrical stimulation (NMES) on short-term recovery from supra-maximal exercise bouts in male triathletes

2011 ◽  
Vol 112 (7) ◽  
pp. 2421-2432 ◽  
Author(s):  
J. K. Malone ◽  
G. F. Coughlan ◽  
L. Crowe ◽  
G. C. Gissane ◽  
B. Caulfield
Author(s):  
Eun Mi Jang ◽  
So Hyun Park

(1) Background—The application of neuromuscular electrical stimulation (NMES) combined with low-intensity exercise to the elderly can be more efficient than low-intensity exercise only in terms of delaying the loss of muscle mass. We aimed to assess the adjunct of NMES to low-intensity lower limb strengthening exercise to prevent falls in frail elderly for a relatively short period of 4 weeks. (2) Methods—Thirty elderly women aged 65 or above were randomly categorized into three groups: control group (CON, n = 8), exercise group (EX, n = 10), and NMES with exercise group (EX + NMES, n = 9). The exercise group took part in a lower limb strengthening exercise program for one hour three times a week for four weeks. Furthermore, the NMES with exercise group had added NMES stimulation when exercising. The limbs’ muscle mass, body fat mass, calf circumference, grip force, five times sit-to-stand test, timed up-and-go test (TUG), one-leg stand test, and Y-balance test (YBT) were evaluated at baseline and 4 weeks after. (3) Results—Comparisons between the three groups showed that the TUG was significantly decreased and the YB was significantly increased in NMES with exercise group (p < 0.05). (4) Conclusions—These results suggested that a combination of NMES stimulation and exercises was more helpful in strengthening balance than exercises alone in the short term.


2019 ◽  
Vol 33 (2) ◽  
pp. 96-111 ◽  
Author(s):  
Katia Monte-Silva ◽  
Daniele Piscitelli ◽  
Nahid Norouzi-Gheidari ◽  
Marc Aureli Pique Batalla ◽  
Philippe Archambault ◽  
...  

Background. Clinical trials have demonstrated some benefits of electromyogram-triggered/controlled neuromuscular electrical stimulation (EMG-NMES) on motor recovery of upper limb (UL) function in patients with stroke. However, EMG-NMES use in clinical practice is limited due to a lack of evidence supporting its effectiveness. Objective. To perform a systematic review and meta-analysis to determine the effects of EMG-NMES on stroke UL recovery based on each of the International Classification of Functioning, Disability, and Health (ICF) domains. Methods. Database searches identified clinical trials comparing the effect of EMG-NMES versus no treatment or another treatment on stroke upper extremity motor recovery. A meta-analysis was done for outcomes at each ICF domain (Body Structure and Function, Activity and Participation) at posttest (short-term) and follow-up periods. Subgroup analyses were conducted based on stroke chronicity (acute/subacute, chronic phases). Sensitivity analysis was done by removing studies rated as poor or fair quality (PEDro score <6). Results. Twenty-six studies (782 patients) met the inclusion criteria. Fifty percent of them were considered to be of high quality. The meta-analysis showed that EMG-NMES has a robust short-term effect on improving UL motor impairment in the Body Structure and Function domain. No evidence was found in favor of EMG-NMES for the Activity and Participation domain. EMG-NMES had a stronger effect for each ICF domain in chronic (≥3 months) compared to acute/subacute phases. Conclusion. EMG-NMES is effective in the short term in improving UL impairment in individuals with chronic stroke.


Author(s):  
Toshiki Kutsuna ◽  
Hitoshi Sugawara ◽  
Hideaki Kurita ◽  
Satomi Kusaka ◽  
Tetsuya Takahashi

Background: Low-intensity resistance training (RT) combined with neuromuscular electrical stimulation (NMES) is one method of exercise to improve the deterioration of physical function. However, it is unclear whether low-intensity RT combined with NMES (RT + NMES) can be safely implemented. Objective: This study aimed to examine the influence of low-intensity RT + NMES on autonomic activity and cardiovascular responses in healthy adults. Methods: This study was an open-label, randomized controlled cross-over trial. The exercise intensity of isometric knee extension RT was set to 40% of the maximum voluntary contraction (peak torque). NMES was adjusted to a biphasic asymmetrical waveform with the frequency maintained at 50 Hz and a phase duration of 300 [Formula: see text]s. The difference in the change in autonomic activity and cardiovascular responses was compared by assessing heart rate variability, blood pressure, and heart rate during RT and [Formula: see text]. Results: Twenty healthy male college students (mean age [Formula: see text] years) participated in this study. The ratio of low- and high-frequency components of heart rate variability, systolic blood pressure, and heart rate increased during exercise in the RT and [Formula: see text] sessions ([Formula: see text]). There were no significant differences in autonomic activity and cardiovascular responses throughout the sessions during RT and [Formula: see text]. Conclusion: In conclusion, our results demonstrated that low-intensity [Formula: see text] was safe and did not induce excessive autonomic and cardiovascular responses in healthy adults.


Author(s):  
J. Flodin ◽  
R. Juthberg ◽  
P. W. Ackermann

Abstract Background Neuromuscular electrical stimulation (NMES) may prevent muscle atrophy, accelerate rehabilitation and enhance blood circulation. Yet, one major drawback is that patient compliance is impeded by the discomfort experienced. It is well-known that the size and placement of electrodes affect the comfort and effect during high-intensity NMES. However, during low-intensity NMES the effects of electrode size/placement are mostly unknown. Therefore, the purpose of this study was to investigate how electrode size and pragmatic placement affect comfort and effect of low-intensity NMES in the thigh and gluteal muscles. Methods On 15 healthy participants, NMES-intensity (mA) was increased until visible muscle contraction, applied with three electrode sizes (2 × 2 cm, 5 × 5 cm, 5 × 9 cm), in three different configurations on quadriceps and hamstrings (short-transverse (ST), long-transverse (LT), longitudinal (L)) and two configurations on gluteus maximus (short-longitudinal (SL) and long-longitudinal (LL)). Current–density (mA/cm2) required for contraction was calculated for each electrode size. Comfort was assessed with a numerical rating scale (NRS, 0–10). Significance was set to p < 0.05 and values were expressed as median (inter-quartile range). Results On quadriceps the LT-placement exhibited significantly better comfort and lower current intensity than the ST- and L-placements. On hamstrings the L-placement resulted in the best comfort together with the lowest intensity. On gluteus maximus the LL-placement demonstrated better comfort and required less intensity than SL-placement. On all muscles, the 5 × 5 cm and 5 × 9 cm electrodes were significantly more comfortable and required less current–density for contraction than the 2 × 2 cm electrode. Conclusion During low-intensity NMES-treatment, an optimized electrode size and practical placement on each individual muscle of quadriceps, hamstrings and gluteals is crucial for comfort and intensity needed for muscle contraction.


2020 ◽  
Vol 36 (4) ◽  
pp. 511-526
Author(s):  
Héber H. Arcolezi ◽  
Willian R. B. M. Nunes ◽  
Selene Cerna ◽  
Rafael A. de Araujo ◽  
Marcelo Augusto Assunção Sanches ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document