scholarly journals The acute physiological and perceptual effects of recovery interval intensity during cycling-based high-intensity interval training

Author(s):  
Christopher R. J. Fennell ◽  
James G. Hopker

Abstract Purpose The current study sought to investigate the role of recovery intensity on the physiological and perceptual responses during cycling-based aerobic high-intensity interval training. Methods Fourteen well-trained cyclists ($$\dot{V}{\text{O}}_{{{\text{2peak}}}}$$ V ˙ O 2peak : 62 ± 9 mL kg−1 min−1) completed seven laboratory visits. At visit 1, the participants’ peak oxygen consumption ($$\dot{V}{\text{O}}_{{{\text{2peak}}}}$$ V ˙ O 2peak ) and lactate thresholds were determined. At visits 2–7, participants completed either a 6 × 4 min or 3 × 8 min high-intensity interval training (HIIT) protocol with one of three recovery intensity prescriptions: passive (PA) recovery, active recovery at 80% of lactate threshold (80A) or active recovery at 110% of lactate threshold (110A). Results The time spent at > 80%, > 90% and > 95% of maximal minute power during the work intervals was significantly increased with PA recovery, when compared to both 80A and 110A, during both HIIT protocols (all P ≤ 0.001). However, recovery intensity had no effect on the time spent at > 90% $$\dot{V}{\text{O}}_{{{\text{2peak}}}}$$ V ˙ O 2peak (P = 0.11) or > 95% $$\dot{V}{\text{O}}_{{{\text{2peak}}}}$$ V ˙ O 2peak (P = 0.50) during the work intervals of both HIIT protocols. Session RPE was significantly higher following the 110A recovery, when compared to the PA and 80A recovery during both HIIT protocols (P < 0.001). Conclusion Passive recovery facilitates a higher work interval PO and similar internal stress for a lower sRPE when compared to active recovery and therefore may be the efficacious recovery intensity prescription.

Author(s):  

Known as HIIT (High-Intensity Interval Training) or high-intensity interval training is at the top of current training. This type of training allows athletes to exercise longer in high intensity and not the other way around. The main objective of this work is to provide a tool for physical education professionals and trainers to evaluate their jiu-jitsu fighters specifically through an adaptation of interval training to jiu-jitsu, and can also obtain parameters through a targeted methodology, such as the fighter's specific endurance index test. The methodology also consists of promoting during the test, active recovery and a high cadence in the executions of movements, this recovery will also promote a higher oxygen consumption with close effort/pause, being considered as short HIIT, with values in the subjective scale of effort perception of 6 to 20, corresponding to high-intensity interval training. According to all the results obtained we can verify that it is an evaluation tool that complies with the requirements of an activity characterized as short intensity interval training, with active recovery, so it has higher caloric expenditure in the training section, as well as oxygen consumption and even a higher average heart rate in training because the subjective perception of mean effort among the subjects tested was 16 on the Borg scale. It is concluded that this proposal meets the initial objectives and will, in addition, this concept can be used for any type of physical activity and various types of sports gestures, thus being an excellent tool for teachers and technicians, and can also be used as part of a structure of physical preparation for combat modalities in several specific phases of training.


Sports ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 34
Author(s):  
Laura Hottenrott ◽  
Martin Möhle ◽  
Alexander Ide ◽  
Sascha Ketelhut ◽  
Oliver Stoll ◽  
...  

Due to physiological and anatomical sex differences, there are variations in the training response, and the recovery periods following exercise may be different. High-intensity interval training (HIIT) protocols are well-suited to differentially investigate the course of recovery. This study was conducted to determine sex-specific differences in the recovery following HIIT intervals interspersed with recovery phases of different lengths. Methods: Well-trained cyclists and triathletes (n = 11 females, n = 11 males) participated in this study. There were no significant sex differences in maximal heart rate (HR), relative peak power to body mass and fat-free mass, training volume, and VO2max-percentiles (females: 91.8 ± 5.5 %, males: 94.6 ± 5.4 %). A 30 s Wingate test was performed four times, separated by different active recovery periods (1, 3, or 10 min). Lactate, HR, oxygen uptake, and subjective rating of exertion and recovery were determined. Results: For the recovery time of three and ten minutes, men showed significantly higher lactate concentrations (p = 0.04, p = 0.004). Contrary, HR recovery and subjective recovery were significant slower in women than in men. Conclusion: During HIIT, women may be more resistant to fatigue and have a greater ability to recover metabolically, but have a slower HR and subjective recovery.


2016 ◽  
Vol 11 (8) ◽  
pp. 1060-1066 ◽  
Author(s):  
Thimo Wiewelhove ◽  
Christian Raeder ◽  
Tim Meyer ◽  
Michael Kellmann ◽  
Mark Pfeiffer ◽  
...  

Purpose:To investigate the effect of repeated use of active recovery during a 4-d shock microcycle with 7 high-intensity interval-training (HIT) sessions on markers of fatigue. Methods:Eight elite male junior tennis players (age 15.1 ± 1.4 y) with an international ranking between 59 and 907 (International Tennis Federation) participated in this study. After each training session, they completed 15 min of either moderate jogging (active recovery [ACT]) or passive recovery (PAS) with a crossover design, which was interrupted by a 4-mo washout period. Countermovement-jump (CMJ) height, serum concentration of creatine kinase (CK), delayed-onset muscle soreness (DOMS), and perceived recovery and stress (Short Recovery and Stress Scale) were measured 24 h before and 24 h after the training program. Results:The HIT shock microcycle induced a large decrease in CMJ performance (ACT: effect size [ES] = –1.39, P < .05; PAS: ES = –1.42, P < .05) and perceived recovery (ACT: ES = –1.79, P < .05; PAS: ES = –2.39, P < .05), as well as a moderate to large increase in CK levels (ACT: ES = 0.76, P > .05; PAS: ES = 0.81, P >.05), DOMS (ACT: ES = 2.02, P < .05; PAS: ES = 2.17, P < .05), and perceived stress (ACT: ES = 1.98, P < .05; PAS: ES = 3.06, P < .05), compared with the values before the intervention. However, no significant recovery intervention × time interactions or meaningful differences in changes were noted in any of the markers between ACT and PAS. Conclusions:Repeated use of individualized ACT, consisting of 15 min of moderate jogging, after finishing each training session during an HIT shock microcycle did not affect exercise-induced fatigue.


2014 ◽  
Vol 39 (7) ◽  
pp. 845-848 ◽  
Author(s):  
Lauren E. Skelly ◽  
Patricia C. Andrews ◽  
Jenna B. Gillen ◽  
Brian J. Martin ◽  
Michael E. Percival ◽  
...  

Subjects performed high-intensity interval training (HIIT) and continuous moderate-intensity training (END) to evaluate 24-h oxygen consumption. Oxygen consumption during HIIT was lower versus END; however, total oxygen consumption over 24 h was similar. These data demonstrate that HIIT and END induce similar 24-h energy expenditure, which may explain the comparable changes in body composition reported despite lower total training volume and time commitment.


2010 ◽  
Vol 35 (3) ◽  
pp. 350-357 ◽  
Author(s):  
Brendon J. Gurd ◽  
Christopher G.R. Perry ◽  
George J.F. Heigenhauser ◽  
Lawrence L. Spriet ◽  
Arend Bonen

The effects of training on silent mating-type information regulator 2 homolog 1 (SIRT1) activity and protein in relationship to peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and mitochondrial content were determined in human skeletal muscle. Six weeks of high-intensity interval training (∼1 h of 10 × 4 min intervals at 90% peak oxygen consumption separated by 2 min rest, 3 days per week) increased maximal activities of mitochondrial enzymes in skeletal muscle by 28% to 36% (citrate synthase, β-hydroxyacyl-coenzyme A dehydrogenase, and cytochrome c oxidase subunit IV) and PGC-1α protein (16%) when measured 4 days after training. Interestingly, total muscle SIRT1 activity (31%) and activity per SIRT1 protein (58%) increased despite decreased SIRT1 protein (20%). The present data demonstrate that exercise-induced mitochondrial biogenesis is accompanied by elevated SIRT1 activity in human skeletal muscle.


2014 ◽  
Vol 19 (1) ◽  
pp. 36-40 ◽  
Author(s):  
Meaghan E. Maddigan ◽  
David G. Behm ◽  
Glen R. Belfry

Context:High intensity interval training (HIIT) has been shown to improve muscle power and endurance, as well as aerobic power.Objective:To assess the effects of HIIT that utilizes resistive elastic bands to improve overhand throwing velocity.Participants:Healthy female volunteers (n = 13) ranging in age from 18–29 years.Interventions:Participants were randomly assigned to either a control group or an experimental group that exercised 3 days per week for 3 weeks. Each training session involved performance of 5 sets of 20 throwing motions against elastic band resistance, which was performed by both extremities.Main Outcome Measures:Maximal oxygen consumption was measured during performance of a graded exercise test that utilized an upper extremity cycle ergometer. A radar gun was used to assess peak throwing velocity and the extent to which throwing velocity was sustained during performance of a 20-throw endurance test.Results:After completing the training, the experimental group exhibited faster peak throwing velocity (61.6 ± 6.6 km/hr to 63.2 ± 8.6 km/hr) and a reduced fatigue index (1.18 ± 0.16 to 1.01 ± 0.02). Training also resulted in a 14% improvement in maximum oxygen consumption (1.40 ± 0.46 L/min to 1.60 ± 0.49 L/ min) and longer time to fatigue (9.99 ± 1.84 min to 11.43 ± 2.29 min).Conclusion:The high-intensity interval training program was effective for improvement of overhand throwing performance.


2016 ◽  
Vol 11 (1) ◽  
pp. 64-76 ◽  
Author(s):  
Elizabeth F. Nagle ◽  
Mary E. Sanders ◽  
Barry A. Franklin

High-intensity interval training (HIIT) has emerged as an attractive alternative to traditional continuous exercise training (CT) programs for clinical and healthy populations who find that they can achieve equal or greater fitness benefits in less time. Land-based HIIT may not be an appropriate choice for some participants. Few studies have explored the acute responses and chronic adaptations of HIIT in an aquatic environment, and no study has compared the cardiometabolic responses of an aquatic-based program to a land-based HIIT program. Shallow-water aquatic exercise (AE) programs utilizing HIIT have elicited comparable and, in some cases, greater physiological responses compared with constant-intensity or continuous AE regimens. Factors that may explain why HIIT routines evoke greater cardiometabolic responses than CT protocols may be based on the types of exercises and how they are cued to effectively manipulate hydrodynamic properties for greater intensities. Favorable aquatic HIIT protocols such as the S.W.E.A.T. system may serve as a beneficial alternative to land-based HIIT programs for clinical, and athletic populations, potentially reducing the likelihood of associated musculoskeletal and orthopedic complications. Hence, the purpose of this review is to examine the role of AE as an alternative safe and effective HIIT modality.


2020 ◽  
Vol 15 (8) ◽  
pp. 1125-1131
Author(s):  
Tomás Chacón Torrealba ◽  
Jaime Aranda Araya ◽  
Nicolas Benoit ◽  
Louise Deldicque

Purpose: To evaluate the effects of a 6-week taekwondo-specific high-intensity interval training (HIIT) in simulated normobaric hypoxia on physical fitness and performance in taekwondoists. Methods: Eighteen male and female black-belt taekwondoists trained twice a week for 6 weeks in normoxia or in hypoxia (FiO2 = 0.143 O2). The HIIT was composed of specific taekwondo movements and simulated fights. Body composition analyses and a frequency speed of kick test during 10 seconds (FSKT10s) and 5 × 10 seconds (FSKTmult), countermovement jump (CMJ) test, Wingate test, and an incremental treadmill test were performed before and after training. Blood lactate concentrations were measured after the FSKTmult and Wingate tests, and a fatigue index during the tests was calculated. Results: A training effect was found for FSKT10s (+35%, P < .001), FSKTmult (+32%, P < .001), and fatigue index (−48%, P = .002). A training effect was found for CMJ height (+5%, P = .003) during the CMJ test. After training, CMJ height increased in hypoxia only (+7%, P = .005). No effect was found for the parameters measured during Wingate test. For the incremental treadmill test, a training effect was found for peak oxygen consumption (P = .002), the latter being 10% lower after than before training in normoxia only (P = .002). Conclusions: In black-belt taekwondoists, hypoxic HIIT twice a week for 6 weeks provides tiny additional gains on key performance parameters compared with normoxic HIIT. Whether the trivial effects reported here might be of physiological relevance to improve performance remains debatable and should be tested individually.


Sign in / Sign up

Export Citation Format

Share Document