Pathophysiological role of the mineralocorticoid receptor in heart: analysis of conditional transgenic models

2003 ◽  
Vol 445 (4) ◽  
pp. 477-481 ◽  
Author(s):  
Antoine Ouvrard-Pascaud ◽  
Frédéric Jaisser
2018 ◽  
Vol 238 (3) ◽  
pp. R143-R159 ◽  
Author(s):  
Clara Lefranc ◽  
Malou Friederich-Persson ◽  
Roberto Palacios-Ramirez ◽  
Aurelie Nguyen Dinh Cat

Obesity is a multifaceted, chronic, low-grade inflammation disease characterized by excess accumulation of dysfunctional adipose tissue. It is often associated with the development of cardiovascular (CV) disorders, insulin resistance and diabetes. Under pathological conditions like in obesity, adipose tissue secretes bioactive molecules called ‘adipokines’, including cytokines, hormones and reactive oxygen species (ROS). There is evidence suggesting that oxidative stress, in particular, the ROS imbalance in adipose tissue, may be the mechanistic link between obesity and its associated CV and metabolic complications. Mitochondria in adipose tissue are an important source of ROS and their dysfunction contributes to the pathogenesis of obesity-related type 2 diabetes. Mitochondrial function is regulated by several factors in order to preserve mitochondria integrity and dynamics. Moreover, the renin–angiotensin–aldosterone system is over-activated in obesity. In this review, we focus on the pathophysiological role of the mineralocorticoid receptor in the adipose tissue and its contribution to obesity-associated metabolic and CV complications. More specifically, we discuss whether dysregulation of the mineralocorticoid system within the adipose tissue may be the upstream mechanism and one of the early events in the development of obesity, via induction of oxidative stress and mitochondrial dysfunction, thus impacting on systemic metabolism and the CV system.


Author(s):  
Johann Bauersachs ◽  
Natalie López Andrés

Aldosterone binds to the mineralocorticoid receptor (MR), a transcription factor of the nuclear receptor family, present in the kidney and in various other non-epithelial cells including the heart and the vasculature (Cannavo et al., 2018). Indeed, extra-renal pathophysiological effects of this hormone have been characterized, extending its actions to the cardiovascular (CV) system (Messaoudi et al., 2012). A growing body of clinical and pre-clinical evidence suggests that MR activation plays an important pathophysiological role in CV remodeling by promoting cardiac hypertrophy, fibrosis, arterial stiffness, as well as in inflammation and oxidative stress (Bauersachs et al., 2015). The following review article outlines the role of MR in CV disease with a focus on myocardial remodeling and heart failure (HF) including clinical trials as well as cellular and animal studies.


2003 ◽  
Vol 2 (1) ◽  
pp. 124
Author(s):  
Y SAINTEMARIE ◽  
A OUVRARDPASCAUD ◽  
J BENITAH ◽  
B ESCOUBET ◽  
C DELCAYRE ◽  
...  

Angiology ◽  
2021 ◽  
pp. 000331972110125
Author(s):  
Atalay Demiray ◽  
Baris Afsar ◽  
Adrian Covic ◽  
Masanari Kuwabara ◽  
Charles J. Ferro ◽  
...  

Increased serum uric acid (SUA) levels have been associated with various pathologic processes such as increased oxidative stress, inflammation, and endothelial dysfunction. Thus, it is not surprising that increased SUA is associated with various adverse outcomes including cardiovascular (CV) diseases. Recent epidemiological evidence suggests that increased SUA may be related to acute myocardial infarction (AMI). Accumulating data also showed that elevated UA has pathophysiological role in the development of AMI. However, there are also studies showing that SUA is not related to the risk of AMI. In this narrative review, we summarized the recent literature data regarding SUA and AMI after providing some background information for the association between UA and coronary artery disease. Future studies will show whether decreasing SUA levels is beneficial for outcomes related to AMI and the optimum SUA levels for best outcomes in CV diseases.


2011 ◽  
Vol 60 (4) ◽  
pp. 329-345 ◽  
Author(s):  
Yoshinobu ICHIMURA ◽  
Masaaki KOMATSU

Sign in / Sign up

Export Citation Format

Share Document