Regulation of vascular tone and arterial blood pressure: role of chloride transport in vascular smooth muscle

2015 ◽  
Vol 467 (3) ◽  
pp. 605-614 ◽  
Author(s):  
Christian A. Hübner ◽  
Björn C. Schroeder ◽  
Heimo Ehmke
1995 ◽  
Vol 73 (5) ◽  
pp. 565-573 ◽  
Author(s):  
Michael P. Walsh ◽  
Gary J. Kargacin ◽  
John Kendrick-Jones ◽  
Thomas M. Lincoln

Vascular smooth muscle contraction is thought to occur by a mechanism similar to that described for striated muscles, i.e., via a cross-bridge cycling – sliding filament mechanism. This symposium focused on Ca2+ signalling and the role of intracellular free Ca2+ concentration, [Ca2+]i, in regulating vascular tone: how contractile stimuli leading to an increase in [Ca2+]i trigger vasoconstriction and how relaxant signals reduce [Ca2+]i causing vasodilation. M.P. Walsh opened the symposium with an overview emphasizing the central role of myosin phosphorylation–dephosphorylation in the regulation of vascular tone and identifying recent developments concerning regulation of [Ca2+]i, Ca2+ sensitization and desensitization of the contractile response, Ca2+-independent protein kinase C induced contraction, and direct regulation of cross-bridge cycling by the thin filament associated proteins caldesmon and calponin. The remainder of the symposium focused on three specific areas related to the regulation of vascular tone: Ca2+ signalling in relation to smooth muscle structure, structure–function relations of myosin, and the role of cyclic GMP (cGMP) dependent protein kinase. G.J. Kargacin described how smooth muscle cells are structured and how second messenger signals such as Ca2+ might be modified or influenced by this structure. J. Kendrick-Jones then discussed the results of mutagenesis studies aimed at understanding how the myosin light chains, particularly the phosphorylatable (Ca2+–calmodulin dependent) regulatory light chains, control myosin. The vasorelaxant effects of signalling molecules such as β-adrenergic agents and nitrovasodilators are mediated by cyclic nucleotide dependent protein kinases, leading principally to a reduction in [Ca2+]i. T.M. Lincoln described the roles of cyclic nucleotide dependent protein kinases, in particular cyclic GMP dependent protein kinase, in vasodilation.Key words: vascular smooth muscle, regulation of contraction, smooth muscle structure, calcium, cyclic GMP, myosin.


2012 ◽  
Vol 16 (4) ◽  
pp. 462-472 ◽  
Author(s):  
Christopher J. Pelham ◽  
Pimonrat Ketsawatsomkron ◽  
Séverine Groh ◽  
Justin L. Grobe ◽  
Willem J. de Lange ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1748
Author(s):  
Eda Demirel ◽  
Caroline Arnold ◽  
Jaspal Garg ◽  
Marius Andreas Jäger ◽  
Carsten Sticht ◽  
...  

The regulator of G-protein signaling 5 (RGS5) acts as an inhibitor of Gαq/11 and Gαi/o activity in vascular smooth muscle cells (VSMCs), which regulate arterial tone and blood pressure. While RGS5 has been described as a crucial determinant regulating the VSMC responses during various vascular remodeling processes, its regulatory features in resting VSMCs and its impact on their phenotype are still under debate and were subject of this study. While Rgs5 shows a variable expression in mouse arteries, neither global nor SMC-specific genetic ablation of Rgs5 affected the baseline blood pressure yet elevated the phosphorylation level of the MAP kinase ERK1/2. Comparable results were obtained with 3D cultured resting VSMCs. In contrast, overexpression of RGS5 in 2D-cultured proliferating VSMCs promoted their resting state as evidenced by microarray-based expression profiling and attenuated the activity of Akt- and MAP kinase-related signaling cascades. Moreover, RGS5 overexpression attenuated ERK1/2 phosphorylation, VSMC proliferation, and migration, which was mimicked by selectively inhibiting Gαi/o but not Gαq/11 activity. Collectively, the heterogeneous expression of Rgs5 suggests arterial blood vessel type-specific functions in mouse VSMCs. This comprises inhibition of acute agonist-induced Gαq/11/calcium release as well as the support of a resting VSMC phenotype with low ERK1/2 activity by suppressing the activity of Gαi/o.


2020 ◽  
Vol 129 (6) ◽  
pp. 1310-1323
Author(s):  
Jennifer L. Magnusson ◽  
Craig A. Emter ◽  
Kevin J. Cummings

The role of serotonin in arterial blood pressure (ABP) regulation across states of vigilance is unknown. We hypothesized that adult rats devoid of CNS serotonin (TPH2−/−) have low ABP in wakefulness and NREM sleep, when serotonin neurons are active. However, TPH2−/− rats experience higher ABP than TPH2+/+ rats in wakefulness and REM only, a phenotype present only in older males and not females. CNS serotonin may be critical for preventing high ABP in males with aging.


2009 ◽  
Vol 81 (3) ◽  
pp. 589-603 ◽  
Author(s):  
Sergio L. Cravo ◽  
Ruy R. Campos ◽  
Eduardo Colombari ◽  
Mônica A. Sato ◽  
Cássia M. Bergamaschi ◽  
...  

Several forms of experimental evidence gathered in the last 37 years have unequivocally established that the medulla oblongata harbors the main neural circuits responsible for generating the vasomotor tone and regulating arterial blood pressure. Our current understanding of this circuitry derives mainly from the studies of Pedro Guertzenstein, a former student who became Professor of Physiology at UNIFESP later, and his colleagues. In this review, we have summarized the main findings as well as our collaboration to a further understanding of the ventrolateral medulla and the control of arterial blood pressure under normal and pathological conditions.


2001 ◽  
Vol 280 (5) ◽  
pp. R1261-R1268 ◽  
Author(s):  
Takashi Miyawaki ◽  
Ann K. Goodchild ◽  
Paul M. Pilowsky

The role of the 5-hydroxytryptamine (5-HT1A) receptors in the rostral ventrolateral medulla (RVLM) on somatosympathetic, baroreceptor, and chemoreceptor reflexes was examined in anesthetized rats. Microinjection of the selective 5-HT1A agonist 8-hydroxy-di- n-propylamino tetralin (8-OH-DPAT) decreased arterial blood pressure and splanchnic sympathetic nerve activity (SNA). Electrical stimulation of the hindlimb evoked early and late excitatory sympathetic responses. Bilateral microinjection in the RVLM of 8-OH-DPAT markedly attenuated both the early and late responses. This potent inhibition of the somatosympathetic reflex persisted even after SNA and arterial blood pressure returned to preinjection levels. Preinjection of the selective 5-HT1A antagonist NAN-190 in the RVLM blocked the sympathoinhibitory effect of 8-OH-DPAT and attenuated the inhibitory effect on the somatosympathetic reflex. 8-OH-DPAT injected in the RVLM did not affect baroreceptor or chemoreceptor reflexes. Our findings suggest that activation of 5-HT1A receptors in the RVLM exerts a potent, selective inhibition on the somatosympathetic reflex.


2017 ◽  
Vol 2 (1) ◽  
pp. 14-17
Author(s):  
Sachin Vaishnav ◽  
Anita Shetty ◽  
Manjula Sarkar

ABSTRACT The stress response to an intense painful surgical stimulus is characterized by activation of the sympathetic nervous system and an increased secretion of the stress hormones. The ability of the alpha agonist dexmedetomidine (DEX) to decrease heart rate (HR) and arterial blood pressure in perioperative period was tested. One hundred and thirty two patients undergoing craniotomy for supratentorial tumor were randomly distributed to receive either saline (B group) or DEX (A group). The placebo group received saline, whereas the treatment group (A group) received a single bolus dose of DEX (1μg/kg) intravenously over 10 minutes before induction of anesthesia. Hemodynamic parameters, such as HR and arterial blood pressure were measured. Both the groups were comparable with respect to age, sex, American Society for Anesthesiologist grade, and duration of surgery. The arterial blood pressure and HR were found to be lower in the DEX group when compared with the placebo group. How to cite this article Vaishnav S, Shetty A, Sarkar M. Prospective Randomized Controlled Study to assess the Role of Dexmedetomidine on Perioperative Hemodynamics in Patients with Supratentorial Tumor undergoing Surgery. Res Inno in Anesth 2017;2(1):14-17.


2011 ◽  
Vol 301 (2) ◽  
pp. H584-H591 ◽  
Author(s):  
Wei-Qi He ◽  
Yan-Ning Qiao ◽  
Cheng-Hai Zhang ◽  
Ya-Jing Peng ◽  
Chen Chen ◽  
...  

Vascular tone, an important determinant of systemic vascular resistance and thus blood pressure, is affected by vascular smooth muscle (VSM) contraction. Key signaling pathways for VSM contraction converge on phosphorylation of the regulatory light chain (RLC) of smooth muscle myosin. This phosphorylation is mediated by Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) but Ca2+-independent kinases may also contribute, particularly in sustained contractions. Signaling through MLCK has been indirectly implicated in maintenance of basal blood pressure, whereas signaling through RhoA has been implicated in salt-induced hypertension. In this report, we analyzed mice with smooth muscle-specific knockout of MLCK. Mesenteric artery segments isolated from smooth muscle-specific MLCK knockout mice (MLCKSMKO) had a significantly reduced contractile response to KCl and vasoconstrictors. The kinase knockout also markedly reduced RLC phosphorylation and developed force. We suggest that MLCK and its phosphorylation of RLC are required for tonic VSM contraction. MLCKSMKO mice exhibit significantly lower basal blood pressure and weaker responses to vasopressors. The elevated blood pressure in salt-induced hypertension is reduced below normotensive levels after MLCK attenuation. These results suggest that MLCK is necessary for both physiological and pathological blood pressure. MLCKSMKO mice may be a useful model of vascular failure and hypotension.


Sign in / Sign up

Export Citation Format

Share Document