Floral primordia-targeted ACS (1-aminocyclopropane-1-carboxylate synthase) expression in transgenic Cucumis melo implicates fine tuning of ethylene production mediating unisexual flower development

Planta ◽  
2014 ◽  
Vol 240 (4) ◽  
pp. 797-808 ◽  
Author(s):  
Jessica A. Switzenberg ◽  
Holly A. Little ◽  
Sue A. Hammar ◽  
Rebecca Grumet
2017 ◽  
Vol 10 (1) ◽  
Author(s):  
David Latrasse ◽  
Natalia Y. Rodriguez-Granados ◽  
Alaguraj Veluchamy ◽  
Kiruthiga Gayathri Mariappan ◽  
Claudia Bevilacqua ◽  
...  

HortScience ◽  
1990 ◽  
Vol 25 (2) ◽  
pp. 207-209 ◽  
Author(s):  
James R. Dunlap ◽  
Sarah E. Lingle ◽  
Gene E. Lester

Postharvest ethylene production and ACC levels were determined in netted muskmelon fruits (Cucumis melo L. var. reticulatus `Magnum 45') exposed to temperature extremes by heating for 3 hr at 45C and/or storage at 4C. The possibility of using seal-packaging to protect the fruit against temperature-induced changes in ethylene production was examined by wrapping melons before treatment with a high-density polyethylene (HDPE) shrink-film. Ethylene production measured in fruit immediately after heating or removal from refrigeration was only 30% of the level determined before treatment, and continued to decline during refrigerated storage. However, the concentration of ACC in these same tissues remained constant or even increased slightly during storage. Wrapping fruit in HDPE film had no effect on the tissue concentrations of ACC or capacity for ethylene synthesis. In contrast to initial measurements, heated or refrigerated fruit held at room temperature (25C) for 24 hr produced ethylene at rates that equalled or exceeded the levels for freshly harvested fruit. These results strongly suggest that temperature-imposed restrictions on ethylene synthesis by netted muskmelon fruit are reversible and occur at the step responsible for converting ACC to ethylene via EFE rather than in the synthesis of ACC. Chemical names used: 1-aminocyclopropane-1-carboxylic acid (ACC).


2012 ◽  
Vol 23 (8) ◽  
pp. 1446-1456 ◽  
Author(s):  
Xiaomin Wang ◽  
Daniel K. Gingrich ◽  
Yunfei Deng ◽  
Zonglie Hong

Mammalian nucleostemin (NS) is preferentially expressed in stem cells and acts to promote cell cycle progression. In plants, stem cell activities have to be terminated during flower development, and this process requires the activation of AGAMOUS (AG) gene expression. Here, a nucleostemin-like 1 gene, NSN1, is shown to be required for flower development in Arabidopsis. The NSN1 mRNA was found in the inflorescence meristem and floral primordia, and its protein was localized to the nucleoli. Both heterozygous and homozygous plants developed defective flowers on inflorescences that were eventually terminated by the formation of carpelloid flowers. Overexpression of NSN1 resulted in loss of apical dominance and formation of defective flowers. Expression of the AG gene was found to be up-regulated in nsn1. The carpelloid flower defect of nsn1 was suppressed by the ag mutation in the nsn1 ag double mutant, whereas double mutants of nsn1 apetala2 (ap2) displayed enhanced defective floral phenotypes. These results suggest that in the delicately balanced regulatory network, NSN1 acts to repress AG and plays an additive role with AP2 in floral organ specification. As a midsize nucleolar GTPase, NSN1 represents a new class of regulatory proteins required for flower development in Arabidopsis.


1997 ◽  
Vol 122 (6) ◽  
pp. 748-751 ◽  
Author(s):  
Monique Guis ◽  
Rinaldo Botondi ◽  
Mohamed Ben-Amor ◽  
Ricardo Ayub ◽  
Mondher Bouzayen ◽  
...  

Transgenic Cantaloupe Charentais melons (Cucumis melo var. cantalupensis Naud. `Védrantais') exhibiting strong inhibition of ethylene production were used as a model to discriminate between ethylene-regulated and ethylene-independent ripening pathways. Compared to wild-type fruit, transgenic fruit did not undergo significant yellowing of the rind and softening of the flesh. However, these effects were completely reversed by treating transgenic fruit with 50 μL·L-1 exogenous ethylene. Pigmentation of the flesh occurred early before the onset of the climacteric and was thus unaffected by ethylene inhibition in transgenic fruit. Total soluble solids accumulated at the same rate in both types of fruit until 38 days after pollination when wild-type fruit abscissed. However, as ethylene-inhibited fruit failed to develop a peduncular abscission zone, they remained attached to the plant and accumulated higher amounts of sugars, mainly sucrose. Harvesting transgenic fruit resulted in a small but significant increase of internal ethylene associated with softening of the flesh.


Development ◽  
1999 ◽  
Vol 126 (12) ◽  
pp. 2715-2726 ◽  
Author(s):  
Q. Chen ◽  
A. Atkinson ◽  
D. Otsuga ◽  
T. Christensen ◽  
L. Reynolds ◽  
...  

A screen for mutations affecting flower formation was carried out and several filamentous flower (fil) alleles were identified. In fil mutants, floral primordia occasionally give rise to pedicels lacking flowers at their ends. This defect is dramatically enhanced in fil rev double mutants, in which every floral primordium produces a flowerless pedicel. These data suggest that the FIL and REV genes are required for an early step of flower formation, possibly for the establishment of a flower-forming domain within the floral primordium. The FIL gene is also required for establishment of floral meristem identity and for flower development. During flower development, the FIL gene is required for floral organ formation in terms of the correct numbers and positions; correct spatial activity of the AGAMOUS, APETALA3, PISTILLATA and SUPERMAN genes; and floral organ development.


2020 ◽  
Vol 21 (2) ◽  
pp. 640 ◽  
Author(s):  
Xin Ming ◽  
Yan-Bin Tao ◽  
Qiantang Fu ◽  
Mingyong Tang ◽  
Huiying He ◽  
...  

Jatropha curcas L. is monoecious with a low female-to-male ratio, which is one of the factors restricting its seed yield. Because the phytohormone cytokinins play an essential role in flower development, particularly pistil development, in this study, we elevated the cytokinin levels in J. curcas flowers through transgenic expression of a cytokinin biosynthetic gene (AtIPT4) from Arabidopsis under the control of a J. curcas orthologue of TOMATO MADS BOX GENE 6 (JcTM6) promoter that is predominantly active in flowers. As expected, the levels of six cytokinin species in the inflorescences were elevated, and flower development was modified without any alterations in vegetative growth. In the transgenic J. curcas plants, the flower number per inflorescence was significantly increased, and most flowers were pistil-predominantly bisexual, i.e., the flowers had a huge pistil surrounded with small stamens. Unfortunately, both the male and the bisexual flowers of transgenic J. curcas were infertile, which might have resulted from the continuously high expression of the transgene during flower development. However, the number and position of floral organs in the transgenic flowers were well defined, which suggested that the determinacy of the floral meristem was not affected. These results suggest that fine-tuning the endogenous cytokinins can increase the flower number and the female-to-male ratio in J. curcas.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 766C-766
Author(s):  
Krista C. Shellie ◽  
David Wolf

“Netted” (Cucumis melo var. reticulatus Naud.) cantaloupes typically abscise when mature, and have a shorter postharvest life than “Honeydew” (Cucumis melo var. inodoris Naud.) -type melons. The amount of ethylene and carbon dioxide produced by two cantaloupe genotypes (slipping), one Honeydew genotype (non-slipping), and the F1 hybrids derived from the slipping x non-slipping genotypes were measured during ripening to understand the genetic control of ethylene and fruit abscission. Sterile, nondestructive gas sampling ports inserted into 20-day-old fruit were used to extract samples from the central cavity of the melons and monitor ethylene and carbon dioxide from day 30 until the fruit was horticulturally mature. Honeydew melons had a lower rate of respiration during maturation and ripening than Netted melons, and Netted melons produced 10-fold more ethylene during ripening than Honeydew types. F1 fruit produced ethylene at levels similar to the Netted parent, abscissed 2 to 4 days later than the Netted parent, yet respired during maturation and ripening like the Honeydew-type parent. Ethylene production, respiration, and abscission appear to be controlled by dominant gene action.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 827A-827 ◽  
Author(s):  
David W. Wolff ◽  
James R. Dunlap

Cucumis melo varieties show a great diversity of ripening and abscission phenotype, ethylene production, and postharvest keeping quality. As a preliminary step in the development of melons with improved shelf-life and modified ripening, we surveyed 100 genotypes of melons with diverse ripening characteristics for ethylene production rate and shelf-life. Genotypes representing seven melon types (Western shipper cantaloupes, Eastern cantaloupes, Long shelf life cantaloupes [LSL], Charenteis, Galias, Honeydews, Casabas) were planted in the field in a randomized complete block with three replications. C. melo var. reticulatus and C. melo var. inodorus were harvested 40 and 50 days post-anthesis, respectively, and brought in the lab for ethylene production measurement. Fruit at horticultural maturity were also harvested and stored at room temperature. After 7 days, a postharvest decay rating (1 = complete rot and collapse–5 = no softening or decay) was taken to determine relative shelf-life of the genotypes. Average ethylene production rate ranged from 44.44 to 0.64 nl·h–1·g–1 for Eastern cantaloupes and Casaba melons, respectively. A negative linear relationship was observed between ethylene production rate and postharvest decay rating. LSL cantaloupes had the lowest ethylene production rate of the netted, orange flesh types. The relationship between ethylene production rate and polymorphism for ACC oxidase (pMEL1) and ACC synthase (pMEACS1) cDNA probes is being investigated.


Sign in / Sign up

Export Citation Format

Share Document