A cis -regulatory element essential for photoreceptor cell-specific expression of a medaka retinal guanylyl cyclase gene

2001 ◽  
Vol 211 (3) ◽  
pp. 145-149 ◽  
Author(s):  
Takehiro Kusakabe ◽  
Norio Suzuki
1992 ◽  
Vol 286 (1) ◽  
pp. 179-185 ◽  
Author(s):  
C P Simkevich ◽  
J P Thompson ◽  
H Poppleton ◽  
R Raghow

The transcriptional activity of plasmid pCOL-KT, in which human pro alpha 1 (I) collagen gene upstream sequences up to -804 and most of the first intron (+474 to +1440) drive expression of the chloramphenicol acetyltransferase (CAT) gene [Thompson, Simkevich, Holness, Kang & Raghow (1991) J. Biol. Chem. 266, 2549-2556], was tested in a number of mesenchymal and non-mesenchymal cells. We observed that pCOL-KT was readily expressed in fibroblasts of human (IMR-90 and HFL-1), murine (NIH 3T3) and avian (SL-29) origin and in a human rhabdomyosarcoma cell line (A204), but failed to be expressed in human erythroleukaemia (K562) and rat pheochromocytoma (PC12) cells, indicating that the regulatory elements required for appropriate tissue-specific expression of the human pro alpha 1 (I) collagen gene were present in pCOL-KT. To delineate the nature of cis-acting sequences which determine the tissue specificity of pro alpha 1 (I) collagen gene expression, functional consequences of deletions in the promoter and first intron of pCOL-KT were tested in various cell types by transient expression assays. Cis elements in the promoter-proximal and intronic sequences displayed either a positive or a negative influence depending on the cell type. Thus deletion of fragments using EcoRV (nt -625 to -442 deleted), XbaI (-804 to -331) or SstII (+670 to +1440) resulted in 2-10-fold decreased expression in A204 and HFL-1 cells. The negative influences of deletions in the promoter-proximal sequences was apparently considerably relieved by deleting sequences in the first intron, and the constructs containing the EcoRV/SstII or XbaI/SstII double deletions were expressed to a much greater extent than either of the single deletion constructs. In contrast, the XbaI* deletion (nt -804 to -609), either alone or in combination with the intronic deletion, resulted in very high expression in all cells regardless of their collagen phenotype; the XbaI*/(-SstII) construct, which contained the intronic SstII fragment (+670 to +1440) in the reverse orientation, was not expressed in either mesenchymal or nonmesenchymal cells. Based on these results, we conclude that orientation-dependent interactions between negatively acting 5′-upstream sequences and the first intron determine the mesenchymal cell specificity of human pro alpha 1 (I) collagen gene transcription.


1990 ◽  
Vol 10 (12) ◽  
pp. 6204-6215
Author(s):  
A Pierani ◽  
A Heguy ◽  
H Fujii ◽  
R G Roeder

Several distinct octamer-binding transcription factors (OTFs) interact with the sequence ATTTGCAT (the octamer motif), which acts as a transcription regulatory element for a variety of differentially controlled genes. The ubiquitous OTF-1 plays a role in expression of the cell cycle-regulated histone H2b gene as well as several other genes, while the tissue-specific OTF-2 has been implicated in the tissue-specific expression of immunoglobulin genes. In an attempt to understand the apparent transcriptional selectivity of these factors, we have investigated the physical and functional characteristics of OTF-1 purified from HeLa cells and both OTF-1 and OTF-2 purified from B cells. High-resolution footprinting and mobility shift-competition assays indicated that these factors were virtually indistinguishable in binding affinities and DNA-protein contacts on either the H2b or an immunoglobulin light-chain (kappa) promoter. In addition, each of the purified factors showed an equivalent intrinsic capacity to activate transcription from either immunoglobulin promoters (kappa and heavy chain) or the H2b promoter in OTF-depleted HeLa and B-cell extracts. However, with OTF-depleted HeLa extracts, neither factor could restore immunoglobulin gene transcription to the relatively high level observed in unfractionated B-cell extracts. Restoration of full immunoglobulin gene activity appears to require an additional B-cell regulatory component which interacts with the OTFs. The additional B-cell factor could act either by facilitating interaction of OTF activation domains with components of the general transcriptional machinery or by contributing a novel activation domain.


1988 ◽  
Vol 8 (7) ◽  
pp. 2896-2909 ◽  
Author(s):  
E A Sternberg ◽  
G Spizz ◽  
W M Perry ◽  
D Vizard ◽  
T Weil ◽  
...  

Terminal differentiation of skeletal myoblasts is accompanied by induction of a series of tissue-specific gene products, which includes the muscle isoenzyme of creatine kinase (MCK). To begin to define the sequences and signals involved in MCK regulation in developing muscle cells, the mouse MCK gene has been isolated. Sequence analysis of 4,147 bases of DNA surrounding the transcription initiation site revealed several interesting structural features, some of which are common to other muscle-specific genes and to cellular and viral enhancers. To test for sequences required for regulated expression, a region upstream of the MCK gene from -4800 to +1 base pairs, relative to the transcription initiation site, was linked to the coding sequences of the bacterial chloramphenicol acetyltransferase (CAT) gene. Introduction of this MCK-CAT fusion gene into C2 muscle cells resulted in high-level expression of CAT activity in differentiated myotubes and no detectable expression in proliferating undifferentiated myoblasts or in nonmyogenic cell lines. Deletion mutagenesis of sequences between -4800 and the transcription start site showed that the region between -1351 and -1050 was sufficient to confer cell type-specific and developmentally regulated expression on the MCK promoter. This upstream regulatory element functioned independently of position, orientation, or distance from the promoter and therefore exhibited the properties of a classical enhancer. This upstream enhancer also was able to confer muscle-specific regulation on the simian virus 40 promoter, although it exhibited a 3- to 5-fold preference for its own promoter. In contrast to the cell type- and differentiation-specific expression of the upstream enhancer, the MCK promoter was able to function in myoblasts and myotubes and in nonmyogenic cell lines when combined with the simian virus 40 enhancer. An additional positive regulatory element was identified within the first intron of the MCK gene. Like the upstream enhancer, this intragenic element functioned independently of position, orientation, and distance with respect to the MCK promoter and was active in differentiated myotubes but not in myoblasts. These results demonstrate that expression of the MCK gene in developing muscle cells is controlled by complex interactions among multiple upstream and intragenic regulatory elements that are functional only in the appropriate cellular context.


Development ◽  
1998 ◽  
Vol 125 (21) ◽  
pp. 4185-4193 ◽  
Author(s):  
Q. Gao ◽  
R. Finkelstein

The Bicoid (Bcd) morphogen establishes the head and thorax of the Drosophila embryo. Bcd activates the transcription of identified target genes in the thoracic segments, but its mechanism of action in the head remains poorly understood. It has been proposed that Bcd directly activates the cephalic gap genes, which are the first zygotic genes to be expressed in the head primordium. It has also been suggested that the affinity of Bcd-binding sites in the promoters of Bcd target genes determines the posterior extent of their expression (the Gene X model). However, both these hypotheses remain untested. Here, we show that a small regulatory region upstream of the cephalic gap gene orthodenticle (otd) is sufficient to recapitulate early otd expression in the head primordium. This region contains two control elements, each capable of driving otd-like expression. The first element has consensus Bcd target sites that bind Bcd in vitro and are necessary for head-specific expression. As predicted by the Gene X model, this element has a relatively low affinity for Bcd. Surprisingly, the second regulatory element has no Bcd sites. Instead, it contains a repeated sequence motif similar to a regulatory element found in the promoters of otd-related genes in vertebrates. Our study is the first demonstration that a cephalic gap gene is directly regulated by Bcd. However, it also shows that zygotic gene expression can be targeted to the head primordium without direct Bcd regulation.


1993 ◽  
Vol 13 (11) ◽  
pp. 6690-6701
Author(s):  
H Koizumi ◽  
M F Horta ◽  
B S Youn ◽  
K C Fu ◽  
B S Kwon ◽  
...  

The gene encoding the cytolytic protein perforin is selectively expressed by activated killer lymphocytes. To understand the mechanisms underlying the cell-type-specific expression of this gene, we have characterized the regulatory functions and the DNA-protein interactions of the 5'-flanking region of the mouse perforin gene (Pfp). A region extending from residues +62 through -141, which possesses the essential promoter activity, and regions further upstream, which are able to either enhance or suppress gene expression, were identified. The region between residues -411 and -566 was chosen for further characterization, since it contains an enhancer-like activity. We have identified a 32-mer sequence (residues -491 to -522) which appeared to be capable of enhancing gene expression in a killer cell-specific manner. Within this segment, a 9-mer motif (5'-ACAGGAAGT-3', residues -505 to -497; designated NF-P motif), which is highly homologous to the Ets proto-oncoprotein-binding site, was found to interact with two proteins, NF-P1 and NF-P2. NF-P2 appears to be induced by reagents known to up-regulate the perforin message level and is present exclusively in killer cells. Electrophoretic mobility shift assay and UV cross-linking experiments revealed that NF-P1 and NF-P2 may possess common DNA-binding subunits. However, the larger native molecular mass of NF-P1 suggests that NF-P1 contains an additional non-DNA-binding subunit(s). In view of the homology between the NF-P motif and other Ets proto-oncoprotein-binding sites, it is postulated that NF-P1 and NF-P2 belong to the Ets protein family. Results obtained from the binding competition assay, nevertheless, suggest that NF-P1 and NF-P2 are related to but distinct from Ets proteins, e.g., Ets-1, Ets-2, and NF-AT/Elf-1, known to be expressed in T cells.


2019 ◽  
Vol 203 (3) ◽  
pp. 686-695 ◽  
Author(s):  
Brian M. Larsen ◽  
Jennifer E. Cowan ◽  
Yueqiang Wang ◽  
Yu Tanaka ◽  
Yongge Zhao ◽  
...  

2019 ◽  
Vol 20 (8) ◽  
pp. 1845 ◽  
Author(s):  
Vichithra R.B. Liyanage ◽  
Carl O. Olson ◽  
Robby M. Zachariah ◽  
James R. Davie ◽  
Mojgan Rastegar

Methyl CpG binding protein-2 (MeCP2) isoforms (E1 and E2) are important epigenetic regulators in brain cells. Accordingly, MeCP2 loss- or gain-of-function mutation causes neurodevelopmental disorders, including Rett syndrome (RTT), MECP2 duplication syndrome (MDS), and autism spectrum disorders (ASD). Within different types of brain cells, highest MeCP2 levels are detected in neurons and the lowest in astrocytes. However, our current knowledge of Mecp2/MeCP2 regulatory mechanisms remains largely elusive. It appears that there is a sex-dependent effect in X-linked MeCP2-associated disorders, as RTT primarily affects females, whereas MDS is found almost exclusively in males. This suggests that Mecp2 expression levels in brain cells might be sex-dependent. Here, we investigated the sex- and cell type-specific expression of Mecp2 isoforms in male and female primary neurons and astrocytes isolated from the murine forebrain. Previously, we reported that DNA methylation of six Mecp2 regulatory elements correlated with Mecp2 levels in the brain. We now show that in male brain cells, DNA methylation is significantly correlated with the transcript expression of these two isoforms. We show that both Mecp2 isoforms are highly expressed in male neurons compared to male astrocytes, with Mecp2e1 expressed at higher levels than Mecp2e2. Our data indicate that higher DNA methylation at the Mecp2 regulatory element(s) is associated with lower levels of Mecp2 isoforms in male astrocytes compared to male neurons.


2018 ◽  
Vol 294 (7) ◽  
pp. 2318-2328 ◽  
Author(s):  
Igor V. Peshenko ◽  
Qinhong Yu ◽  
Sunghyuk Lim ◽  
Diana Cudia ◽  
Alexander M. Dizhoor ◽  
...  

1997 ◽  
Vol 273 (2) ◽  
pp. F264-F273 ◽  
Author(s):  
T. Rai ◽  
S. Uchida ◽  
F. Marumo ◽  
S. Sasaki

The promoters of rat and mouse aquaporin-2 (AQP-2) genes were cloned and compared with that of human genes. Nucleotide identity up to -593 bp was 62%, and consensus sequences such as TATA box and adenosine 3',5'-cyclic monophosphate responsive element were conserved. Deoxyribonuclease I footprint assay revealed a footprinted region at -210 to -184 bp in rat AQP-2 gene promoter produced by nuclear extract from nonexpressing (liver) tissue. The sequence of this region included a GATA motif but otherwise showed no homology with any other previously known cis-elements. Electromobility shift assay and ultraviolet cross-linking analysis confirmed that specific binding proteins to this element were present in kidney, spleen, and liver and that these proteins were distinct from GATA factors. Both deletion and mutation of this cis-element abolished the protein DNA binding and increased promoter activity in in vitro reporter gene assay using rat cultured hepatocyte Ac2F cells, suggesting the negative regulatory role of this cis-element. These results indicate that tissue-specific expression of AQP-2 gene may in part be regulated by this novel negative acting cis-element.


Sign in / Sign up

Export Citation Format

Share Document