Expression of apoptosis-related proteins and morphological changes in a rat tumor model of human small cell lung cancer prior to and after treatment with radiotherapy, carboplatin, or combined treatment

2003 ◽  
Vol 442 (4) ◽  
pp. 349-355 ◽  
Author(s):  
E. Fokkema ◽  
E. G. E. de Vries ◽  
H. J. M. Groen ◽  
C. Meijer ◽  
W. Timens
Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1056 ◽  
Author(s):  
Nazilah Abdul Satar ◽  
Mohd Nazri Ismail ◽  
Badrul Hisham Yahaya

Cancer stem cells (CSCs) represent a small subpopulation within a tumour. These cells possess stem cell-like properties but also initiate resistance to cytotoxic agents, which contributes to cancer relapse. Natural compounds such as curcumin that contain high amounts of polyphenols can have a chemosensitivity effect that sensitises CSCs to cytotoxic agents such as cisplatin. This study was designed to investigate the efficacy of curcumin as a chemo-sensitiser in CSCs subpopulation of non-small cell lung cancer (NSCLC) using the lung cancer adenocarcinoma human alveolar basal epithelial cells A549 and H2170. The ability of curcumin to sensitise lung CSCs to cisplatin was determined by evaluating stemness characteristics, including proliferation activity, colony formation, and spheroid formation of cells treated with curcumin alone, cisplatin alone, or the combination of both at 24, 48, and 72 h. The mRNA level of genes involved in stemness was analysed using quantitative real-time polymerase chain reaction. Liquid chromatography-mass spectrometry was used to evaluate the effect of curcumin on the CSC niche. A combined treatment of A549 subpopulations with curcumin reduced cellular proliferation activity at all time points. Curcumin significantly (p < 0.001) suppressed colonies formation by 50% and shrank the spheroids in CSC subpopulations, indicating inhibition of their self-renewal capability. This effect also was manifested by the down-regulation of SOX2, NANOG, and KLF4. Curcumin also regulated the niche of CSCs by inhibiting chemoresistance proteins, aldehyde dehydrogenase, metastasis, angiogenesis, and proliferation of cancer-related proteins. These results show the potential of using curcumin as a therapeutic approach for targeting CSC subpopulations in non-small cell lung cancer.


2019 ◽  
Vol 20 (23) ◽  
pp. 6026
Author(s):  
Hwani Ryu ◽  
Hyo Jeong Kim ◽  
Jie-Young Song ◽  
Sang-Gu Hwang ◽  
Jae-Sung Kim ◽  
...  

We previously reported on a poly (ADP-ribose) polymerase (PARP) 1/2 inhibitor N-(3-(hydroxycarbamoyl)phenyl)carboxamide (designated KJ-28d), which increased the death of human ovarian cancer BRCA1-deficient SNU-251 cells. In the present study, we further investigated the antitumor activities of KJ-28d in BRCA-proficient non-small cell lung cancer (NSCLC) cells to expand the use of PARP inhibitors. KJ-28d significantly inhibited the growth of NSCLC cells in vitro and in vivo, and induced DNA damage and reactive oxygen species in A549 and H1299 cells. Combined treatment with KJ-28d and ionizing radiation led to increased DNA damage responses in A549 and H1299 cells compared to KJ-28d or ionizing radiation alone, resulting in apoptotic cell death. Moreover, the combination of KJ-28d plus a DNA-damaging therapeutic agent (carboplatin, cisplatin, paclitaxel, or doxorubicin) synergistically inhibited cell proliferation, compared to either drug alone. Taken together, the findings demonstrate the potential of KJ-28d as an effective anti-cancer therapeutic agent for BRCA-deficient and -proficient cancer cells. KJ-28d might have potential as an adjuvant when used in combination with radiotherapy or DNA-damaging agents, pending further investigations.


PLoS ONE ◽  
2015 ◽  
Vol 10 (11) ◽  
pp. e0142596 ◽  
Author(s):  
Weihua Zhan ◽  
Tianyu Han ◽  
Chenfu Zhang ◽  
Caifeng Xie ◽  
Mingxi Gan ◽  
...  

2020 ◽  
Author(s):  
Guangping Wu ◽  
Yuan Luo ◽  
Yusai Xie ◽  
Yang Han ◽  
Di Zhang ◽  
...  

Abstract Background: Wnt5b is noncanonical Wnt ligand, and programmed-death ligand 1 (PD-L1) is a targeted agent for immunotherapy, but the mechanism by which Wnt5b regulates PD-L1 expression in non-small cell lung cancer (NSCLC) is unclear. Methods: Wnt5b and PD-L1 expressions were detected in NSCLC specimens by immunohistochemistry. The interrelationship connecting Wnt5b with PD-L1 was verified using dual-luciferase assay, immunofluorescence, coimmunoprecipitation, western blot,real-time PCR and xenograft tumor model. Results: Wnt5b and PD-L1 expressions were positively correlated in NSCLC specimens. Five-year survival time in the group with their coexpression was significantly lower than that without coexpression. Under the effect of Wnt5b, Frizzled-3 (Fzd3) initiated Dishevellde-3 (Dvl-3) membrane recruitment via DEP domain by Dvl-3 phosphorylation, contributing to activate PCP/JNK signaling through the small GTPase Rac1, and then upregulate PD-L1 expression and promote the malignant phenotype of NSCLC in vivo and in vitro. After PD-L1 antibody treatment, Wnt5b induced tumor growth was inhibited significantly in xenograft tumor model. Conclusion: We demonstrate a new signal transduction pathway: Wnt5b initiates Dvl-3 membrane recruitment via DEP domain by Fzd3 so as to promote Rac1–PCP/JNK–PD-L1 pathway, which provides a potential target for clinical intervention and immunotherapy in lung cancer.


BMC Cancer ◽  
2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Francesca Andriani ◽  
Elena Landoni ◽  
Mavis Mensah ◽  
Federica Facchinetti ◽  
Rosalba Miceli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document