Morphological, structural, and functional alterations of the prefrontal cortex and the basolateral amygdala after early lesion of the rat mediodorsal thalamus

2017 ◽  
Vol 222 (6) ◽  
pp. 2527-2545 ◽  
Author(s):  
Zakaria Ouhaz ◽  
Saadia Ba-M’hamed ◽  
Mohamed Bennis
2018 ◽  
Vol 38 (10) ◽  
pp. 2569-2578 ◽  
Author(s):  
Tobias F. Marton ◽  
Helia Seifikar ◽  
Francisco J. Luongo ◽  
Anthony T. Lee ◽  
Vikaas S. Sohal

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Vinicius M. Gadotti ◽  
Zizhen Zhang ◽  
Junting Huang ◽  
Gerald W. Zamponi

AbstractPeripheral nerve injury can lead to remodeling of brain circuits, and this can cause chronification of pain. We have recently reported that male mice subjected to spared injury of the sciatic nerve undergo changes in the function of the medial prefrontal cortex (mPFC) that culminate in reduced output of layer 5 pyramidal cells. More recently, we have shown that this is mediated by alterations in synaptic inputs from the basolateral amygdala (BLA) into GABAergic interneurons in the mPFC. Optogenetic inhibition of these inputs reversed mechanical allodynia and thermal hyperalgesia in male mice. It is known that the processing of pain signals can exhibit marked sex differences. We therefore tested whether the dysregulation of BLA to mPFC signaling is equally altered in female mice. Injection of AAV-Arch3.0 constructs into the BLA followed by implantation of a fiberoptic cannula into the mPFC in sham and SNI operated female mice was carried out, and pain behavioral responses were measured in response to yellow light mediated activation of this inhibitory opsin. Our data reveal that Arch3.0 activation leads to a marked increase in paw withdrawal thresholds and latencies in response to mechanical and thermal stimuli, respectively. However, we did not observe nerve injury-induced changes in mPFC layer 5 pyramidal cell output in female mice. Hence, the observed light-induced analgesic effects may be due to compensation for dysregulated neuronal circuits downstream of the mPFC.


2013 ◽  
Vol 110 (1) ◽  
pp. 221-229 ◽  
Author(s):  
Jonathan Dilgen ◽  
Hugo A. Tejeda ◽  
Patricio O'Donnell

Although interactions between the amygdala and prefrontal cortex (PFC) are critical for emotional guidance of behavior, the manner in which amygdala affects PFC function is not clear. Whereas basolateral amygdala (BLA) output neurons exhibit many characteristics associated with excitatory neurotransmission, BLA stimulation typically inhibits PFC cell firing. This apparent discrepancy could be explained if local PFC inhibitory interneurons were activated by BLA inputs. Here, we used in vivo juxtacellular and intracellular recordings in anesthetized rats to investigate whether BLA inputs evoke feedforward inhibition in the PFC. Juxtacellular recordings revealed that BLA stimulation evoked action potentials in PFC interneurons and silenced most pyramidal neurons. Intracellular recordings from PFC pyramidal neurons showed depolarizing postsynaptic potentials, with multiple components evoked by BLA stimulation. These responses exhibited a relatively negative reversal potential (Erev), suggesting the contribution of a chloride component. Intracellular administration or pressure ejection of the GABA-A antagonist picrotoxin resulted in action-potential firing during the BLA-evoked response, which had a more depolarized Erev. These results suggest that BLA stimulation engages a powerful inhibitory mechanism within the PFC mediated by local circuit interneurons.


2019 ◽  
Vol 116 (9) ◽  
pp. 3799-3804 ◽  
Author(s):  
Tingting Sun ◽  
Zihua Song ◽  
Yanghua Tian ◽  
Wenbo Tian ◽  
Chunyan Zhu ◽  
...  

Obsessive-compulsive disorder (OCD) affects ∼1 to 3% of the world’s population. However, the neural mechanisms underlying the excessive checking symptoms in OCD are not fully understood. Using viral neuronal tracing in mice, we found that glutamatergic neurons from the basolateral amygdala (BLAGlu) project onto both medial prefrontal cortex glutamate (mPFCGlu) and GABA (mPFCGABA) neurons that locally innervate mPFCGlu neurons. Next, we developed an OCD checking mouse model with quinpirole-induced repetitive checking behaviors. This model demonstrated decreased glutamatergic mPFC microcircuit activity regulated by enhanced BLAGlu inputs. Optical or chemogenetic manipulations of this maladaptive circuitry restored the behavioral response. These findings were verified in a mouse functional magnetic resonance imaging (fMRI) study, in which the BLA–mPFC functional connectivity was increased in OCD mice. Together, these findings define a unique BLAGlu→mPFCGABA→Glu circuit that controls the checking symptoms of OCD.


Sign in / Sign up

Export Citation Format

Share Document