scholarly journals Study of the glial cytoarchitecture of the developing olfactory bulb of a shark using immunochemical markers of radial glia

Author(s):  
A. Docampo-Seara ◽  
E. Candal ◽  
M. A. Rodríguez

AbstractDuring development of the olfactory bulb (OB), glial cells play key roles in axonal guiding/targeting, glomerular formation and synaptic plasticity. Studies in mammals have shown that radial glial cells and peripheral olfactory glia (olfactory ensheathing cells, OECs) are involved in the development of the OB. Most studies about the OB glia were carried out in mammals, but data are lacking in most non-mammalian vertebrates. In the present work, we studied the development of the OB glial system in the cartilaginous fish Scyliorhinus canicula (catshark) using antibodies against glial markers, such as glial fibrillary acidic protein (GFAP), brain lipid-binding protein (BLBP), and glutamine synthase (GS). These glial markers were expressed in cells with radial morphology lining the OB ventricle of embryos and this expression continues in ependymal cells (tanycytes) in early juveniles. Astrocyte-like cells were also observed in the granular layer and surrounding glomeruli. Numerous GS-positive cells were present in the primary olfactory pathway of embryos. In the developmental stages analysed, the olfactory nerve layer and the glomerular layer were the regions with higher GFAP, BLBP and GS immuno-reactivity. In addition, numerous BLBP-expressing cells (a marker of mammalian OECs) showing proliferative activity were present in the olfactory nerve layer. Our findings suggest that glial cells of peripheral and central origin coexist in the OB of catshark embryos and early juveniles. These results open the path for future studies about the differential roles of glial cells in the catshark OB during embryonic development and in adulthood.

2016 ◽  
Author(s):  
Lisha Choubey ◽  
Jantzen C Collette ◽  
Karen Muller Smith

Fibroblast growth factors (FGFs) and their receptors (FGFRs) have numerous functions in the developing and adult CNS. For example, the FGFR1 receptor is important for proliferation of radial glial cells in the cortex and hippocampus, oligodendrocyte proliferation and regeneration, midline glia morphology and soma translocation, Bergmann glia morphology, and cerebellar morphogenesis. In addition, FGFR1 signaling in astrocytes is required for postnatal maturation of interneurons expressing parvalbumin (PV). FGFR1 is implicated in synapse formation in the hippocampus, and alterations in the expression of Fgfr1 and its ligand, Fgf2 accompany major depression. Understanding which cell types express Fgfr1 during development may elucidate its roles in normal development of the brain as well as illuminate possible causes of certain neuropsychiatric disorders. Here, we used a BAC transgenic reporter line to trace Fgfr1 expression in the developing murine CNS. The specific transgenic line employed was created by the GENSAT project, tgFGFR1-EGFPGP338Gsat, and includes a gene encoding enhanced green fluorescent protein (EGFP) under the regulation of the Fgfr1 promoter, to trace Fgfr1 expression in the developing CNS. This model reveals that Fgfr1 is primarily expressed in glial cells, in both astrocytes and oligodendrocytes, along with some neurons. Dual labeling experiments indicate that the proportion of GFP+ (Fgfr1+) cells that are also GFAP+ increases from postnatal day 7 (P7) to 1 month, illuminating dynamic changes in Fgfr1 expression during postnatal development of the cortex. In postnatal neurogenic areas, GFP expression was also observed in SOX2, doublecortin (DCX), and brain lipid-binding protein (BLBP) expressing cells. Fgfr1 is also highly expressed in DCX positive cells of the dentate gyrus, but not in the rostral migratory stream. Fgfr1 driven GFP was also observed in tanycytes and GFAP+ cells of the hypothalamus, as well as in Bergmann glia and astrocytes of the cerebellum. Understanding which cell types express Fgfr1 may elucidate its role in neuropsychiatric disorders and brain development.


2017 ◽  
Vol 284 (1859) ◽  
pp. 20170743 ◽  
Author(s):  
Conrad Helm ◽  
Anett Karl ◽  
Patrick Beckers ◽  
Sabrina Kaul-Strehlow ◽  
Elke Ulbricht ◽  
...  

Bilaterians usually possess a central nervous system, composed of neurons and supportive cells called glial cells. Whereas neuronal cells are highly comparable in all these animals, glial cells apparently differ, and in deuterostomes, radial glial cells are found. These particular secretory glial cells may represent the archetype of all (macro) glial cells and have not been reported from protostomes so far. This has caused controversial discussions of whether glial cells represent a homologous bilaterian characteristic or whether they (and thus, centralized nervous systems) evolved convergently in the two main clades of bilaterians. By using histology, transmission electron microscopy, immunolabelling and whole-mount in situ hybridization, we show here that protostomes also possess radial glia-like cells, which are very likely to be homologous to those of deuterostomes. Moreover, our antibody staining indicates that the secretory character of radial glial cells is maintained throughout their various evolutionary adaptations. This implies an early evolution of radial glial cells in the last common ancestor of Protostomia and Deuterostomia. Furthermore, it suggests that an intraepidermal nervous system—composed of sensory cells, neurons and radial glial cells—was probably the plesiomorphic condition in the bilaterian ancestor.


2021 ◽  
pp. 1-26
Author(s):  
Tatsuro Yamamoto ◽  
Ayako Yamamoto ◽  
Hiroki Tanabe ◽  
Naomichi Nishimura

Abstract The brain is rich in long chain polyunsaturated fatty acids (PUFAs), which play an essential role in its development and functions. Here we examined the impact of maternal n-3 PUFA intake deficiency during gestation and lactation on the development of glial cells in the pup’s developing cerebral cortex. In addition, using myelination as indicator and the anti-myelin basic protein (MBP) as measurement to establish the relationship between the number of glial fibrillary acidic protein (GFAP)-positive cells and the development of oligodendrocytes, we determined the myelination state of the somatosensory cortex at day 14 postnatal. Rat dams were fed either a control (Cont) or an n-3 PUFA-deficient (Def) diet for 60 days (acclimatisation :14 days; gestation: 21 days; lactation:21 days). Pups lactated from dams throughout the experiment. The distribution pattern of astrocytes in pups on day 7 postnatal was immunohistochemically analysed using GFAP and brain lipid binding protein (BLBP) as markers for mature astrocytes and astrocyte-specific radial glial cells, respectively. It was observed that, when compared with Cont pups, GFAP-positive cells decreased, BLBP-positive cells increased and myelinated structures were sparser in the somatosensory cortices of Def pups. In the open field test on day 21 postnatal, behavioural parameters did not differ between groups. Our results indicated that inhibited maturation of astrocytes caused by maternal n-3 PUFA deficiency hindered the development of brain glial cells of neonatal rats and hence, maternal n-3 PUFA intake during the gestation and lactation periods may have been crucial for the brain cell composition of pups.


2021 ◽  
Author(s):  
Shinji Urata ◽  
Megumi Kishimoto-Urata ◽  
Ryoji Kagoya ◽  
Fumiaki Imamura ◽  
Shin Nagayama ◽  
...  

The impact of SARS-CoV-2 on the olfactory pathway was studied over several time points using Syrian golden hamsters. We found an incomplete recovery of the olfactory sensory neurons, prolonged activation of glial cells in the olfactory bulb, and a decrease in the density of dendritic spines within the hippocampus. These data may be useful for elucidating the mechanism underlying long-lasting olfactory dysfunction and cognitive impairment as a post-acute COVID-19 syndrome.


2016 ◽  
Author(s):  
Lisha Choubey ◽  
Jantzen C Collette ◽  
Karen Muller Smith

Fibroblast growth factors (FGFs) and their receptors (FGFRs) have numerous functions in the developing and adult CNS. For example, the FGFR1 receptor is important for proliferation of radial glial cells in the cortex and hippocampus, oligodendrocyte proliferation and regeneration, midline glia morphology and soma translocation, Bergmann glia morphology, and cerebellar morphogenesis. In addition, FGFR1 signaling in astrocytes is required for postnatal maturation of interneurons expressing parvalbumin (PV). FGFR1 is implicated in synapse formation in the hippocampus, and alterations in the expression of Fgfr1 and its ligand, Fgf2 accompany major depression. Understanding which cell types express Fgfr1 during development may elucidate its roles in normal development of the brain as well as illuminate possible causes of certain neuropsychiatric disorders. Here, we used a BAC transgenic reporter line to trace Fgfr1 expression in the developing murine CNS. The specific transgenic line employed was created by the GENSAT project, tgFGFR1-EGFPGP338Gsat, and includes a gene encoding enhanced green fluorescent protein (EGFP) under the regulation of the Fgfr1 promoter, to trace Fgfr1 expression in the developing CNS. This model reveals that Fgfr1 is primarily expressed in glial cells, in both astrocytes and oligodendrocytes, along with some neurons. Dual labeling experiments indicate that the proportion of GFP+ (Fgfr1+) cells that are also GFAP+ increases from postnatal day 7 (P7) to 1 month, illuminating dynamic changes in Fgfr1 expression during postnatal development of the cortex. In postnatal neurogenic areas, GFP expression was also observed in SOX2, doublecortin (DCX), and brain lipid-binding protein (BLBP) expressing cells. Fgfr1 is also highly expressed in DCX positive cells of the dentate gyrus, but not in the rostral migratory stream. Fgfr1 driven GFP was also observed in tanycytes and GFAP+ cells of the hypothalamus, as well as in Bergmann glia and astrocytes of the cerebellum. Understanding which cell types express Fgfr1 may elucidate its role in neuropsychiatric disorders and brain development.


2009 ◽  
Vol 67 (3a) ◽  
pp. 684-688 ◽  
Author(s):  
Carla Alessandra Scorza ◽  
Ricardo Mario Arida ◽  
Fulvio Alexandre Scorza ◽  
Esper Abrão Cavalheiro ◽  
Maria da Graça Naffah-Mazzacoratti

OBJECTIVE: Nestin is temporarily expressed in several tissues during development and it is replaced by other protein types during cell differentiation process. This unique property allows distinguishing between undifferentiated and differentiated cells. This study was delineated to analyze the temporal pattern of nestin expression in cortical radial glial cells of rats during normal development and of rats submitted to recurrent status epilepticus (SE) in early postnatal life (P). METHOD: Experimental rats were submitted to pilocarpine-induced SE on P7-9. The cortical temporal profile of nestin was studied by immunohistochemistry at multiple time points (P9, P10, P12, P16, P30 and P90). RESULTS: We observed delayed nestin down-regulation in experimental rats of P9, P10, P12 and P16 groups. In addition, few radial glial cells were still present only in P21 experimental rats. CONCLUSION: Our results suggested that SE during early postnatal life alters normal maturation during a critical period of brain development.


2017 ◽  
Author(s):  
Olga Zueva ◽  
Maleana Khoury ◽  
Thomas Heinzeller ◽  
Daria Mashanova ◽  
Vladimir Mashanov

AbstractBrittle stars (Ophiuroidea, Echinodermata) have been increasingly used in studies of animal behavior, locomotion, regeneration, physiology, and bioluminescence. The success of these studies directly depends on good working knowledge of ophiuroid nervous system. Here, we describe the arm nervous system at different levels of organization: microanatomy of the radial nerve cord and peripheral nerves, neural ultrastructure, and localization of different cell types using specific antibody markers. We standardize the nomenclature of nerves and ganglia and provide an anatomically accurate digital 3D model of the arm nervous system as a reference for future studies. Our results helped identify several general features characteristic to the adult echinoderm nervous system, including the extensive anatomical interconnections between the ectoneural and hyponeural components and neuroepithelial organization of the central nervous system with its supporting scaffold formed by radial glial cells. In addition, we provide further support to the notion that the echinoderm radial glia is a complex and diverse cell population. We also tested the suitability of a range of specific cell-type markers for studies of the brittle star nervous system and established that the radial glial cells are reliably labeled by the ERG1 antibodies, whereas the best neuronal markers are acetylated tubulin, ELAV and synaptotagmin B. The transcription factor Brn1/2/4, a marker of neuronal progenitors, is expressed not only in neurons, but also in a subpopulation of radial glia. For the first time, we describe putative ophiuroid proprioceptors associated with the hyponeural part of the central nervous system.


2020 ◽  
Vol 6 (45) ◽  
pp. eabd2068
Author(s):  
Zhen Li ◽  
William A. Tyler ◽  
Ella Zeldich ◽  
Gabriel Santpere Baró ◽  
Mayumi Okamoto ◽  
...  

How the rich variety of neurons in the nervous system arises from neural stem cells is not well understood. Using single-cell RNA-sequencing and in vivo confirmation, we uncover previously unrecognized neural stem and progenitor cell diversity within the fetal mouse and human neocortex, including multiple types of radial glia and intermediate progenitors. We also observed that transcriptional priming underlies the diversification of a subset of ventricular radial glial cells in both species; genetic fate mapping confirms that the primed radial glial cells generate specific types of basal progenitors and neurons. The different precursor lineages therefore diversify streams of cell production in the developing murine and human neocortex. These data show that transcriptional priming is likely a conserved mechanism of mammalian neural precursor lineage specialization.


Sign in / Sign up

Export Citation Format

Share Document