Whole blood platelet deposition on extracellular matrix under flow conditions in preterm neonatal sepsis

2002 ◽  
Vol 161 (5) ◽  
pp. 270-274 ◽  
Author(s):  
Yaron Finkelstein ◽  
Boris Shenkman ◽  
Lea Sirota ◽  
Tali H. Vishne ◽  
Rima Dardik ◽  
...  
1994 ◽  
Vol 71 (04) ◽  
pp. 511-516 ◽  
Author(s):  
J J Badimon ◽  
D Weng ◽  
J H Chesebro ◽  
V Fuster ◽  
L Badimon

SummaryThrombin plays a key role in platelet activation and thrombosis. Specific inhibition of thrombin appears to be one of the best approaches to prevent thrombus formation. We have studied the effects of a synthetic a-aminoboronic acid derivative - [Ac, (D) Phe-Pro-Boro-Arg-Hydrocloric acid] - on platelet deposition on severely damaged arterial wall. Platelet deposition was evaluated under well characterized rheological conditions in an original perfusion chamber and detected by autologous mIn-labeled platelets. The study was performed “in vivo” in a porcine model of arterial thrombosis triggered by severely damaged vessel wall at blood flow conditions mimicking mild stenosis (1690 s−1) and patent (212 s−1) vessels. In addition, ex-vivo platelet aggregation activity was evaluated by whole blood impedance aggregometry using collagen, ADP and thrombin as agonists. The synthetic a-aminoboronic peptide was intravenously administered as a bolus followed by continuous infusion. Ex vivo thrombin-induced whole blood platelet aggregation was totally abolished, while ADP- and Collagen-induced whole blood platelet aggregation was not modified. The effects of the synthetic antithrombin on platelet deposition were evaluated in native blood (non-anticoagulated) conditions and in combination with heparin. Under both experimental conditions, the synthetic peptide significantly inhibited platelet deposition at local flow conditions of both high (1690 s−1) and low (212s−1) shear rates. Our results suggest that specific inhibition of locally generated thrombin might be a good strategy to prevent platelet dependent arterial thrombus formation independently of the local flow shear rate of the area at risk.


1997 ◽  
Vol 85 (4) ◽  
pp. 283-294 ◽  
Author(s):  
David Varon ◽  
Rima Dardik ◽  
Boris Shenkman ◽  
Shlomo Kotev-Emeth ◽  
Nahid Farzame ◽  
...  

1987 ◽  
Author(s):  
M R Buchanan ◽  
E Bastida ◽  
J Aznar-Salatti ◽  
P de Groot

It is generally thought that the extracellular matrix (ECM) is thrombogenic.However,one of us (MRB) has reported that the ECM is thromboresistant,and postulated that this was due to the release of endothelial cell (EC) 13-hydroxyoctadecadienoic acid (13-HODE) into the ECM. To test this possibility, we measured platelet adhesion (PLT ADH) onto cultured ECs and their ECMs exposed by 3 methods. We also extracted the ECMs for HPLC analysis of 13-HODE.PLT ADH was expressed as i)adhesion of 3H-adenine labelled platelets/mm2 of ECs or ECMs under static conditions, and ii) % surface^ area coverage measured morphometrically following 5"perfusion with citrated whole blood at 1300 sec-1 in the flat chamber.ECMs were prepared by removing the EC monolayers by freeze thawing , cellulose acetate stripping or NH4OH treatment. PLT ADH to ECs under static and flow conditions were 4700±240/mm2 and 0.1%, respectively, and were associated with 12,6± 1 pg of 13-HODE/mm2 of EC surface (M+SEM). Removal of the ECs by freeze thawing or stripping, resulted in a 18% and 25% increase in PLT ADH to the ECM,under static and flow conditions respectively, and a 80% decrease in ECM associated 13-HODE level. Removal of the EC by NH4OH resulted in a 380% and 770% increase in PLT ADH to the ECM in static and flow conditions. 13-HODE was undetectable.These data support the hypothesis that 13-HODE released from ECs influences the ECM thrombogenecity, and indicate that the residual amounts of components present in the ECMs following EC removal is influenced by the method of ECM preparation.


Blood ◽  
2001 ◽  
Vol 98 (12) ◽  
pp. 3340-3345 ◽  
Author(s):  
Nancy A. Turner ◽  
Joel L. Moake ◽  
Larry V. McIntire

Abstract Using heparinized whole blood and flow conditions, it was shown that adenosine 5′-diphosphate (ADP) receptors P2Y12 and P2Y1 are both important in direct shear-induced platelet aggregation and platelet aggregation subsequent to initial adhesion onto von Willebrand factor (vWf)–collagen. In the viscometer, whole blood was subjected to shear rates of 750, 1500, and 3000 s−1 for 30 seconds at room temperature. The extent of aggregation was determined by flow cytometry. The P2Y12antagonist AR-C69 931MX (ARMX) reduced shear-induced aggregation at these rates by 56%, 54%, and 16%, respectively, compared to control samples. Adenosine 3′,5′-diphosphate (A3P5P; P2Y1antagonist) inhibited shear-induced aggregation by 40%, 30% and 29%, respectively, compared to control samples. Blockade of both ADP receptors at 3000 s−1 with ARMX plus A3P5P further reduced the platelet aggregation by 41% compared to the addition of ARMX alone (57% compared to control samples). Using a parallel-plate flow chamber, whole blood was perfused over bovine collagen type 1 at a wall shear rate of 3000 s−1 for 60 seconds. Platelet deposition was quantified with epifluorescence video microscopy and digital image processing. Blockade of P2Y12 alone or blockade of P2Y1 alone did not reduce thrombus formation on vWf–collagen. In contrast, blockade of both P2Y12 and P2Y1 reduced platelet deposition by 72%. These results indicate that combinations of antagonists of the ADP receptors P2Y12 and P2Y1 are effective inhibitors of direct shear-induced platelet aggregation and of platelet aggregation subsequent to initial adhesion under flow conditions. Inhibitors of these pathways are potentially useful as antiarterial thrombotic agents.


2016 ◽  
Vol 115 (02) ◽  
pp. 333-343 ◽  
Author(s):  
Stefania Momi ◽  
Philip G. de Groot ◽  
Monica Battiston ◽  
Luigi de Marco ◽  
Emanuela Falcinelli ◽  
...  

SummaryPlatelets contain and release matrix metalloproteinase-2 (MMP-2) that in turn potentiates platelet aggregation. Platelet deposition on a damaged vascular wall is the first, crucial, step leading to thrombosis. Little is known about the effects of MMP-2 on platelet activation and adhesion under flow conditions. We studied the effect of MMP-2 on shear-dependent platelet activation using the O’Brien filtration system, and on platelet deposition using a parallel-plate perfusion chamber. Preincubation of human whole blood with active MMP-2 (50 ng/ml, i. e. 0.78 nM) shortened filter closure time (from 51.8 ± 3.6 sec to 40 ± 2.7 sec, p< 0.05) and increased retained platelets (from 72.3 ± 2.3 % to 81.1 ± 1.8 %, p< 0.05) in the O’Brien system, an effect prevented by a specific MMP-2 inhibitor. High shear stress induced the release of MMP-2 from platelets, while TIMP-2 levels were not significantly reduced, therefore, the MMP-2/TIMP-2 ratio increased significantly showing enhanced MMP-2 activity. Preincubation of whole blood with active MMP-2 (0.5 to 50 ng/ml, i.e 0.0078 to 0.78 nM) increased dose-dependently human platelet deposition on collagen under high shear-rate flow conditions (3000 sec-1) (maximum +47.0 ± 11.9 %, p< 0.05, with 50 ng/ml), while pre-incubation with a MMP-2 inhibitor reduced platelet deposition. In real-time microscopy studies, increased deposition of platelets on collagen induced by MMP-2 started 85 sec from the beginning of perfusion, and was abolished by a GPIIb/IIIa antagonist, while MMP-2 had no effect on platelet deposition on fibrinogen or VWF. Confocal microscopy showed that MMP-2 enhances thrombus volume (+20.0 ± 3.0 % vs control) rather than adhesion. In conclusion, we show that MMP-2 potentiates shear-induced platelet activation by enhancing thrombus formation.Supplementary Material to this article is available online at www.thrombosis-online.com.


2005 ◽  
Vol 52 (12) ◽  
pp. 4011-4017 ◽  
Author(s):  
Yair Levy ◽  
Boris Shenkman ◽  
Ilia Tamarin ◽  
Rachel Pauzner ◽  
Yehuda Shoenfeld ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2878-2878 ◽  
Author(s):  
Eduardo Arellano-Rodrigo ◽  
Irene Lopez-Vilchez ◽  
Patricia Molina ◽  
Marcos Pino ◽  
Maribel Diaz-Ricart ◽  
...  

Abstract BACKGROUND: Despite the proven efficacy and safety profile of dabigatran as compared to warfarin, bleeding remains a concern as with all anticoagulants and the reversal of dabigatran’s anticoagulant effect for emergency procedures remains controversial. Recently, idarucizumab, a specific antidote for dabigatran, has been functionally characterized and its efficacy demonstrated in animal models and healthy volunteer studies. AIMS: We explored the effects of dabigatran on hemostasis in human blood focusing on possible interference with platelet and coagulation responses to vessel injury under flow conditions. We also compared the potential efficacy of idarucizumab with procoagulant strategies such as prothrombin complex concentrates (PCC), activated PCC (aPCC) or rFVIIa at reversing the antithrombotic action of dabigatran to better understand local processes in response to injury. METHODS: Concentrations of dabigatran equivalent to the Cmax reported at steady state after therapy with 150 mg twice daily (184 ng/mL) were added in vitro to blood aliquots from 11 healthy donors. Whole blood samples were used to evaluate modifications in different coagulation biomarkers: 1) fibrin and platelet deposition on damaged vascular segments with whole blood under flow conditions at a shear rate of 600 s-1, 2) dynamics of thrombin generation (TG) in plasma using a fluorogenic assay (Technothrombin TGA) and 3) viscoelastic parameters of clot formation in whole blood using by thromboelastometry (ROTEM) The efficacy of specific reversal with idarucizumab 0.3, 1 and 3 mg/mL was compared with that of non specific procoagulant concentrates such as aPCC 25 and 75 IU/kg, PCC 70 IU/kg, or rFVIIa 120 µg/kg. RESULTS: Dabigatran (184 ng/mL) caused a pronounced 85% reduction of fibrin coverage on the damaged vessel from 67.2±9.8 to 9.5±1.3 % (p<0.01) and a moderate 35% reduction of platelet deposition from 25.9±2.7 to 16.9±2.9 % (p<0.01). Dabigatran also altered dynamics of TG with a prolongation of the lag-phase and a reductions in the maximal thrombin peak and potential of thrombin generation (p<0.01). In ROTEM, dabigatran significantly prolonged clotting time to 352±60 sec (p<0.01) and clot formation time to 312±76 sec (p<0.05). Idarucizumab completely reversed the alterations in all different biomarkers induced by dabigatran. Additionally, fibrin coverage and platelet deposition were restored to baseline values in flow studies. TG and ROTEM parameters also returned to normal values after idarucizumab. Reversal strategies with aPCC or PCC normalized and even over-compensated alterations in TG kinetics and partially improved alterations in ROTEM parameters caused by dabigatran. Interestingly, aPCC and PCC moderately improved the alteration in fibrin deposition caused by dabigatran in flow studies (15.7±8.2, 29.3±14.5, and 15.2±3.7 %, respectively for aPCCs 25, 75 or PCCs 70 IU/kg). However, levels of fibrin formation did not return to baseline values before dabigatran (67.2±32.5 %). rFVIIa showed only moderate effects on some of the biomarkers evaluated, though values were never restored to the baseline. CONCLUSIONS: Dabigatran (184 ng/mL) added to blood from healthy volunteers caused evident alterations in hemostasis parameters related to its recognized anticoagulant action. Procoagulant concentrates significantly compensated for the overall anti-hemostastic action of dabigatran. Overall, 75 U/kg aPCC seemed the more efficient nonspecific reversal therapy. In clear contrast with non specific procoagulant strategies, idarucizumab, the specific antidote to dabigatran completely reversed all alterations in coagulation parameters evaluated in circulating human blood and in assay systems. (Supported by SAF 2011-2814 and PI13/00517, Spanish Gov & FEDER) Disclosures van Ryn: Boehringer Ingelheim Pharma: Employment. Escolar:Boehringer Ingelheim Pharma: Investigator Sponsored Research Funding Other.


1987 ◽  
Vol 58 (02) ◽  
pp. 744-748 ◽  
Author(s):  
A R Saniabadi ◽  
G D O Lowe ◽  
J C Barbenel ◽  
C D Forbes

SummarySpontaneous platelet aggregation (SPA) was studied in human whole blood at 3, 5, 10, 20, 30, 40 and 60 minutes after venepuncture. Using a whole blood platelet counter, SPA was quantified by measuring the fall in single platelet count upon rollermixing aliquots of citrated blood at 37° C. The extent of SPA increased with the time after venepuncture, with a correlation coefficient of 0.819. The inhibitory effect of dipyridamole (Dipy) on SPA was studied: (a) 10 μM at each time interval; (b) 0.5-100 μM at 3 and 30 minutes and (c) 15 μM in combination with 100 μM adenosine, 8 μM 2-chloroadenosine (2ClAd, an ADP receptor blocker) and 50 μM aspirin. There was a rapid decrease in the inhibitory effect of Dipy with the time after venepuncture; the correlation coefficient was -0.533. At all the concentrations studied, Dipy was more effective at 3 minutes than at 30 minutes after venepuncture. A combination of Dipy with adenosine, 2ClAd or aspirin was a more effective inhibitor of SPA than either drug alone. However, when 15 μM Dipy and 10 μM Ad were added together, the inhibitory effect of Dipy was not increased significantly, suggesting that Dipy inhibits platelet aggregation independent of Ad. The increase in SPA with the time after venepuncture was abolished when blood was taken directly into the anticoagulant containing 5 μM 2ClAd. It is suggested that ADP released from the red blood cells is responsible for the increased platelet aggregability with the time after venepuncture and makes a serious contribution to the artifacts of in vitro platelet function studies.


1985 ◽  
Vol 54 (03) ◽  
pp. 612-616 ◽  
Author(s):  
A J Carter ◽  
S Heptinstall

SummaryThe platelet aggregation that occurred in whole blood in response to several aggregating agents (collagen, arachidonic acid, adenosine diphosphate, adrenaline and thrombin) was measured using an Ultra-Flo 100 Whole Blood Platelet Counter. The amounts of thromboxane B2 produced were measured by radioimmunoassay. The effects of various inhibitors of thromboxane synthesis and the effects of apyrase, an enzyme that destroys adenosine diphosphate, were determined.Platelet aggregation was always accompanied by the production of thromboxane B2, and the amounts produced depended on the nature and concentration of the aggregating agent used. The various inhibitors of thromboxane synthesis - aspirin and flurbiprofen (cyclo-oxygenase inhibitors), BW755C (a cyclo-oxygenase and lipoxygenase inhibitor) and dazoxiben (a selective thromboxane synthase inhibitor) - did not markedly inhibit aggregation. Results obtained using apyrase showed that adenosine diphosphate contributed to the aggregation process, and that its role must be acknowledged when devising means of inhibiting platelet aggregation in vivo.


Sign in / Sign up

Export Citation Format

Share Document