scholarly journals Deposition of whole blood platelets on extracellular matrix under flow conditions in preterm infants

2002 ◽  
Vol 86 (2) ◽  
pp. 127F-130 ◽  
Author(s):  
N Linder
1987 ◽  
Author(s):  
M R Buchanan ◽  
E Bastida ◽  
J Aznar-Salatti ◽  
P de Groot

It is generally thought that the extracellular matrix (ECM) is thrombogenic.However,one of us (MRB) has reported that the ECM is thromboresistant,and postulated that this was due to the release of endothelial cell (EC) 13-hydroxyoctadecadienoic acid (13-HODE) into the ECM. To test this possibility, we measured platelet adhesion (PLT ADH) onto cultured ECs and their ECMs exposed by 3 methods. We also extracted the ECMs for HPLC analysis of 13-HODE.PLT ADH was expressed as i)adhesion of 3H-adenine labelled platelets/mm2 of ECs or ECMs under static conditions, and ii) % surface^ area coverage measured morphometrically following 5"perfusion with citrated whole blood at 1300 sec-1 in the flat chamber.ECMs were prepared by removing the EC monolayers by freeze thawing , cellulose acetate stripping or NH4OH treatment. PLT ADH to ECs under static and flow conditions were 4700±240/mm2 and 0.1%, respectively, and were associated with 12,6± 1 pg of 13-HODE/mm2 of EC surface (M+SEM). Removal of the ECs by freeze thawing or stripping, resulted in a 18% and 25% increase in PLT ADH to the ECM,under static and flow conditions respectively, and a 80% decrease in ECM associated 13-HODE level. Removal of the EC by NH4OH resulted in a 380% and 770% increase in PLT ADH to the ECM in static and flow conditions. 13-HODE was undetectable.These data support the hypothesis that 13-HODE released from ECs influences the ECM thrombogenecity, and indicate that the residual amounts of components present in the ECMs following EC removal is influenced by the method of ECM preparation.


2002 ◽  
Vol 161 (5) ◽  
pp. 270-274 ◽  
Author(s):  
Yaron Finkelstein ◽  
Boris Shenkman ◽  
Lea Sirota ◽  
Tali H. Vishne ◽  
Rima Dardik ◽  
...  

1997 ◽  
Vol 85 (4) ◽  
pp. 283-294 ◽  
Author(s):  
David Varon ◽  
Rima Dardik ◽  
Boris Shenkman ◽  
Shlomo Kotev-Emeth ◽  
Nahid Farzame ◽  
...  

Author(s):  
E. T. O'Toole ◽  
R. R. Hantgan ◽  
J. C. Lewis

Thrombocytes (TC), the avian equivalent of blood platelets, support hemostasis by aggregating at sites of injury. Studies in our lab suggested that fibrinogen (fib) is a requisite cofactor for TC aggregation but operates by an undefined mechanism. To study the interaction of fib with TC and to identify fib receptors on cells, fib was purified from pigeon plasma, conjugated to colloidal gold and used both to facilitate aggregation and as a receptor probe. Described is the application of computer assisted reconstruction and stereo whole mount microscopy to visualize the 3-D organization of fib receptors at sites of cell contact in TC aggregates and on adherent cells.Pigeon TC were obtained from citrated whole blood by differential centrifugation, washed with Ca++ free Hank's balanced salts containing 0.3% EDTA (pH 6.5) and resuspended in Ca++ free Hank's. Pigeon fib was isolated by precipitation with PEG-1000 and the purity assessed by SDS-PAGE. Fib was conjugated to 25nm colloidal gold by vortexing and the conjugates used as the ligand to identify fib receptors.


Author(s):  
Quintin J. Lai ◽  
Stuart L. Cooper ◽  
Ralph M. Albrecht

Thrombus formation and embolization are significant problems for blood-contacting biomedical devices. Two major components of thrombi are blood platelets and the plasma protein, fibrinogen. Previous studies have examined interactions of platelets with polymer surfaces, fibrinogen with platelets, and platelets in suspension with spreading platelets attached to surfaces. Correlative microscopic techniques permit light microscopic observations of labeled living platelets, under static or flow conditions, followed by the observation of identical platelets by electron microscopy. Videoenhanced, differential interference contrast (DIC) light microscopy permits high-resolution, real-time imaging of live platelets and their interactions with surfaces. Interference reflection microscopy (IRM) provides information on the focal adhesion of platelets on surfaces. High voltage, transmission electron microscopy (HVEM) allows observation of platelet cytoskeletal structure of whole mount preparations. Low-voltage, high resolution, scanning electron microscopy allows observation of fine surface detail of platelets. Colloidal gold-labeled fibrinogen, used to identify the Gp Ilb/IIIa membrane receptor for fibrinogen, can be detected in all the above microscopies.


1989 ◽  
Vol 61 (03) ◽  
pp. 485-489 ◽  
Author(s):  
Eva Bastida ◽  
Lourdes Almirall ◽  
Antonio Ordinas

SummaryBlood platelets are thought to be involved in certain aspects of malignant dissemination. To study the role of platelets in tumor cell adherence to vascular endothelium we performed studies under static and flow conditions, measuring tumor cell adhesion in the absence or presence of platelets. We used highly metastatic human adenocarcinoma cells of the lung, cultured human umbilical vein endothelial cells (ECs) and extracellular matrices (ECM) prepared from confluent EC monolayers. Our results indicated that under static conditions platelets do not significantly increase tumor cell adhesion to either intact ECs or to exposed ECM. Conversely, the studies performed under flow conditions using the flat chamber perfusion system indicated that the presence of 2 × 105 pl/μl in the perfusate significantly increased the number of tumor cells adhered to ECM, and that this effect was shear rate dependent. The maximal values of tumor cell adhesion were obtained, in presence of platelets, at a shear rate of 1,300 sec-1. Furthermore, our results with ASA-treated platelets suggest that the role of platelets in enhancing tumor cell adhesion to ECM is independent of the activation of the platelet cyclooxygenase pathway.


PLoS ONE ◽  
2020 ◽  
Vol 15 (6) ◽  
pp. e0233841 ◽  
Author(s):  
Sherrianne Ng ◽  
Tobias Strunk ◽  
Amy H. Lee ◽  
Erin E. Gill ◽  
Reza Falsafi ◽  
...  

Blood ◽  
1985 ◽  
Vol 66 (3) ◽  
pp. 735-737 ◽  
Author(s):  
BK Kim ◽  
FC Chao ◽  
R Leavitt ◽  
AS Fauci ◽  
KM Meyers ◽  
...  

Abstract Diadenosine tetraphosphate (AP4A) is an unusual nucleotide found in a variety of cells, including platelets. It has been suggested that platelet AP4A is stored in the dense granules and is metabolically inactive. We have studied the AP4A content of blood platelets in two patients and three cattle with Chediak-Higashi syndrome (CHS), a hereditary platelet defect with dense granule deficiency. Acid-soluble extractions of whole blood and platelets were neutralized. The adenosine triphosphate (ATP) level was measured by luminescence technique. To measure the AP4A content, the neutralized extract was treated with phosphomonoesterase for removal of ATP. The AP4A content was then measured by coupling the phosphodiesterase and luciferase reaction. The AP4A content was 0.43 nmol/mg protein for normal human platelets and 0.004 nmol/mg protein for CHS platelets. The ATP/AP4A ratio was 67 for normal and 3,023 for CHS platelets. The whole blood AP4A was reduced by 89% in CHS patients who had only a slight decrease in ATP level (26% reduction). Similarly, bovine platelets with CHS showed a marked decrease of AP4A content and a moderate reduction of the ATP level. The platelet ATP/AP4A ratio was 351 and 3,133 for normal and CHS cattle, respectively. Results demonstrate a marked reduction of AP4A in CHS platelets and suggest that AP4A may be a useful marker for the measurement of dense granule content in platelets.


Blood ◽  
1996 ◽  
Vol 88 (7) ◽  
pp. 2569-2577 ◽  
Author(s):  
S Godyna ◽  
M Diaz-Ricart ◽  
WS Argraves

Fibulin-1 is a component of the extracellular matrix that surrounds vascular smooth muscle. This observation, along with the recent finding that fibulin-1 can bind fibrinogen (J Biol Chem 270:19458, 1995), prompted investigation into the potential role of fibulin-1 as a thrombogenic agent. In perfusion chamber assays, platelets in whole blood under flow conditions attached and spread on surfaces coated with fibulin-1. This adhesion was completely blocked by fibulin-1 antibodies. Platelets free of plasma did not attach to fibulin-1 coated surfaces; however, with the addition of fibrinogen, platelet adhesion to fibulin-1 took place. When detergent extracts of platelets were subjected to fibulin-1-Sepharose affinity chromatography, the integrin alpha IIb beta 3 was selected. Solid phase binding assays using purified components showed that integrin alpha IIb beta 3 could not bind directly to fibulin-1 but in the presence of fibrinogen the integrin bound to fibulin-1-coated surfaces. Monoclonal alpha IIb beta 3 antibodies capable of blocking its interaction with fibrinogen completely blocked platelet adhesion to fibulin-1 in both whole blood perfusion and static adhesion assays. The results show that fibulin-1 can support platelet attachment via a bridge of fibrinogen to the platelet integrin alpha IIb beta 3. When fibroblast monolayers containing extracellular matrix-incorporated fibulin-1 were used as adhesion substrates, platelet adhesion in the presence of fibrinogen could be inhibited by 30% using antibodies to fibulin-1. Following vascular injury, fibulin-1 present in the extracellular matrix of the vessel wall may therefore interact with plasma fibrinogen and promote platelet adhesion, leading to the formation of a platelet plug. Thus, fibulin-1 joins the list of matrix proteins including collagens I and IV and fibronectin that mediate platelet adhesion via a plasma protein bridge. This bridging phenomenon may represent a general mechanism by which platelets interact with exposed subendothelial matrices following vascular injury.


Sign in / Sign up

Export Citation Format

Share Document