scholarly journals Can data from native mosquitoes support determining invasive species habitats? Modelling the climatic niche of Aedes japonicus japonicus (Diptera, Culicidae) in Germany

2019 ◽  
Vol 119 (1) ◽  
pp. 31-42
Author(s):  
Antje Kerkow ◽  
Ralf Wieland ◽  
Linus Früh ◽  
Franz Hölker ◽  
Jonathan M. Jeschke ◽  
...  

AbstractInvasive mosquito species and the pathogens they transmit represent a serious health risk to both humans and animals. Thus, predictions on their potential geographic distribution are urgently needed. In the case of a recently invaded region, only a small number of occurrence data is typically available for analysis, and absence data are not reliable. To overcome this problem, we have tested whether it is possible to determine the climatic ecological niche of an invasive mosquito species by using both the occurrence data of other, native species and machine learning. The approach is based on a support vector machine and in this scenario applied to the Asian bush mosquito (Aedes japonicus japonicus) in Germany. Presence data for this species (recorded in the Germany since 2008) as well as for three native mosquito species were used to model the potential distribution of the invasive species. We trained the model with data collected from 2011 to 2014 and compared our predicted occurrence probabilities for 2015 with observations found in the field throughout 2015 to evaluate our approach. The prediction map showed a high degree of concordance with the field data. We applied the model to medium climate conditions at an early stage of the invasion (2011–2015), and developed an explanation for declining population densities in an area in northern Germany. In addition to the already known distribution areas, our model also indicates a possible spread to Saarland, southwestern Rhineland-Palatinate and in 2015 to southern Bavaria, where the species is now being increasingly detected. However, there is also evidence that the possible distribution area under the mean climate conditions was underestimated.

2018 ◽  
Vol 34 (1) ◽  
pp. 38-41 ◽  
Author(s):  
David Bradt ◽  
Lisa Coburn ◽  
Kristy K. Bradley ◽  
Bruce H. Noden

ABSTRACT In spring 2017, mosquito larvae were collected from 25 sites across eastern Oklahoma as part of a Zika virus vector surveillance effort. Aedes japonicus japonicus larvae were collected from horse troughs at 2 sites in Ottawa County, OK. Identification was made using 1 larva stored in 70% ethanol and 3 adult females reared from the larvae. Another invasive mosquito species, Culex coronator, was detected at 2 different sites, adding 2 additional counties to the 9 where the species had been previously reported. The presence of these invasive species in Oklahoma may have an impact on future regional arbovirus concerns.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Roger Eritja ◽  
Sarah Delacour-Estrella ◽  
Ignacio Ruiz-Arrondo ◽  
Mikel A. González ◽  
Carlos Barceló ◽  
...  

Abstract Background Active surveillance aimed at the early detection of invasive mosquito species is usually focused on seaports and airports as points of entry, and along road networks as dispersion paths. In a number of cases, however, the first detections of colonizing populations are made by citizens, either because the species has already moved beyond the implemented active surveillance sites or because there is no surveillance in place. This was the case of the first detection in 2018 of the Asian bush mosquito, Aedes japonicus, in Asturias (northern Spain) by the citizen science platform Mosquito Alert. Methods The collaboration between Mosquito Alert, the Ministry of Health, local authorities and academic researchers resulted in a multi-source surveillance combining active field sampling with broader temporal and spatial citizen-sourced data, resulting in a more flexible and efficient surveillance strategy. Results Between 2018 and 2020, the joint efforts of administrative bodies, academic teams and citizen-sourced data led to the discovery of this species in northern regions of Spain such as Cantabria and the Basque Country. This raised the estimated area of occurrence of Ae. japonicus from < 900 km2 in 2018 to > 7000 km2 in 2020. Conclusions This population cluster is geographically isolated from any other population in Europe, which raises questions about its origin, path of introduction and dispersal means, while also highlighting the need to enhance surveillance systems by closely combining crowd-sourced surveillance with public health and mosquito control agencies’ efforts, from local to continental scales. This multi-actor approach for surveillance (either passive and active) shows high potential efficiency in the surveillance of other invasive mosquito species, and specifically the major vector Aedes aegypti which is already present in some parts of Europe. Graphical abstract


2012 ◽  
Vol 17 (43) ◽  
Author(s):  
O Šebesta ◽  
I Rudolf ◽  
L Betášová ◽  
J Peško ◽  
Z Hubálek

Between July and September 2012, seventeen larvae of the invasive mosquito species Aedes (Stegomyia) albopictus (Skuse) were discovered using 60 ovitraps at four study sites alongside two main road exits in South Moravia, Czech Republic. This is the first report of imported Ae. albopictus in the Czech Republic. The findings highlight the need for a regular surveillance programme to monitor this invasive species throughout western and central Europe.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2507
Author(s):  
Stephanie Jansen ◽  
Dániel Cadar ◽  
Renke Lühken ◽  
Wolf Peter Pfitzner ◽  
Hanna Jöst ◽  
...  

The global spread of invasive mosquito species increases arbovirus infections. In addition to the invasive species Aedes albopictus and Aedes japonicus, Aedes koreicus has spread within Central Europe. Extensive information on its vector competence is missing. Ae. koreicus from Germany were investigated for their vector competence for chikungunya virus (CHIKV), Zika virus (ZIKV) and West Nile virus (WNV). Experiments were performed under different climate conditions (27 ± 5 °C; 24 ± 5 °C) for fourteen days. Ae. koreicus had the potential to transmit CHIKV and ZIKV but not WNV. Transmission was exclusively observed at the higher temperature, and transmission efficiency was rather low, at 4.6% (CHIKV) or 4.7% (ZIKV). Using a whole virome analysis, a novel mosquito-associated virus, designated Wiesbaden virus (WBDV), was identified in Ae. koreicus. Linking the WBDV infection status of single specimens to their transmission capability for the arboviruses revealed no influence on ZIKV transmission. In contrast, a coinfection of WBDV and CHIKV likely has a boost effect on CHIKV transmission. Due to its current distribution, the risk of arbovirus transmission by Ae. koreicus in Europe is rather low but might gain importance, especially in regions with higher temperatures. The impact of WBDV on arbovirus transmission should be analyzed in more detail.


2016 ◽  
Vol 4 (2) ◽  
pp. 70 ◽  
Author(s):  
Thomas Kollars ◽  
Peggy G. Kollars ◽  
Bannie Hulsey

Background: Mosquitoes are the principal vector of pathogens to humans throughout the world.  Ports are a primary means to which invasive mosquito species and the pathogens they carry are introduced into new areas and where the mosquito species was once eradicated.Methods: The ports of Porto Cortes (Honduras) and Savannah Port, (USA) were evaluated using the Bioagent Transport and Environmental Modeling System (BioTEMS) invasive species model to determine what species would be most likely to invade and survive in the Jebel Ali Port area (UAE).  The Porto Cortes study site was evaluated to determine if mosquito control using ecofriendly pesticides was practical at the port of origin. Conclusion: The Bioagent Transport and Environmental Modeling System TIGER model provides information that can be utilized to interdict and control invasive mosquito species to reduce the risk they become permanently established. The receiving ports were at risk from mosquito invasion, however, because of niche parameters, the Savannah Port was at risk from four invasive species from Honduras and the Jebel Ali Port was at risk from Ae. albopictus from Porto Cortes and Savannah and Ae. vexans from Savannah. Mosquito control was obtained at the point of origin and optimal surveillance and control sites were identified.


2012 ◽  
Vol 17 (4) ◽  
Author(s):  
D Werner ◽  
M Kronefeld ◽  
F Schaffner ◽  
H Kampen

Adult females of two invasive species, Aedes albopictus and Aedes japonicus japonicus, were collected for the first time in July and August 2011 in Germany. Previously, only immature stages of these species had been found in the country. Repeated detection of these species reveals the Upper Rhine Valley in south-west Germany to be a particularly sensitive region for the introduction and establishment of exotic mosquito species that needs careful observation.


Parasite ◽  
2021 ◽  
Vol 28 ◽  
pp. 45
Author(s):  
Eva Krupa ◽  
Nicolas Henon ◽  
Bruno Mathieu

The invasive mosquito Aedes japonicus japonicus (Theobald, 1901) settled in 2013 in the Alsace region, in the northeast of France. In this temperate area, some mosquito species use diapause to survive cold winter temperatures and thereby foster settlement and dispersal. This study reports diapause and its seasonality in a field population of Ae. japonicus in the northeast of France. For two years, eggs were collected from May to the beginning of November. They were most abundant in summer and became sparse in late October. Diapause eggs were determined by the presence of a fully developed embryo in unhatched eggs after repeated immersions. Our study showed effective diapause of Ae. japonicus in this part of France. At the start of the egg-laying period (week 20), we found up to 10% of eggs under diapause, and this rate reached 100% in October. The 50% cut-off of diapause incidence was determined by the end of summer, leading to an average calculated maternal critical photoperiod of 13 h 23 min. Interestingly, diapause was shown to occur in part of the eggs even at the earliest period of the two seasons, i.e. in May of each year. Even though we observed that the size of eggs was positively correlated with diapause incidence, morphology cannot be used as the unique predictive indicator of diapause status due to overlapping measurements between diapausing and non-diapausing eggs. This study provides new knowledge on diapause characterisation and invasive traits of Ae. japonicus.


Sign in / Sign up

Export Citation Format

Share Document