scholarly journals Short tail stories: the hirudin-like factors HLF6 and HLF7 of the Asian medicinal leech, Hirudinaria manillensis

Author(s):  
Christian Müller ◽  
Chantal Eickelmann ◽  
Dana Sponholz ◽  
Jan-Peter Hildebrandt

AbstractThe leech-derived hirudins and hirudin-like factors (HLFs) share a common molecule structure: a short N-terminus, a central globular domain, and an elongated C-terminal tail. All parts are important for function. HLF6 and HLF7 were identified in the Asian medicinal leech, Hirudinaria manillensis. The genes of both factors encode putative splice variants that differ in length and composition of their respective C-terminal tails. In either case, the tails are considerably shorter compared to hirudins. Here we describe the functional analyses of the natural splice variants and of synthetic variants that comprise an altered N-terminus and/or a modified central globular domain. All natural splice variants of HLF6 and HLF7 display no detectable thrombin-inhibitory potency. In contrast, some synthetic variants effectively inhibit thrombin, even with tails as short as six amino acid residues in length. Our data indicate that size and composition of the C-terminal tail of hirudins and HLFs can vary in a great extent, yet the full protein may still retain the ability to inhibit thrombin.

IBRO Reports ◽  
2019 ◽  
Vol 6 ◽  
pp. S427-S428
Author(s):  
Jae Seung Lee ◽  
Hae-Jin Kweon ◽  
Byung-Chang Suh ◽  
Hyosang Lee

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Susan M. Mitchell ◽  
Morven Graham ◽  
Xinran Liu ◽  
Ralf M. Leonhardt

AbstractThe pigment cell-specific protein PMEL forms a functional amyloid matrix in melanosomes onto which the pigment melanin is deposited. The amyloid core consists of a short proteolytic fragment, which we have termed the core-amyloid fragment (CAF) and perhaps additional parts of the protein, such as the PKD domain. A highly O-glycosylated repeat (RPT) domain also derived from PMEL proteolysis associates with the amyloid and is necessary to establish the sheet-like morphology of the assemblies. Excluded from the aggregate is the regulatory N-terminus, which nevertheless must be linked in cis to the CAF in order to drive amyloid formation. The domain is then likely cleaved away immediately before, during, or immediately after the incorporation of a new CAF subunit into the nascent amyloid. We had previously identified a 21 amino acid long region, which mediates the regulatory activity of the N-terminus towards the CAF. However, many mutations in the respective segment caused misfolding and/or blocked PMEL export from the endoplasmic reticulum, leaving their phenotype hard to interpret. Here, we employ a saturating mutagenesis approach targeting the motif at single amino acid resolution. Our results confirm the critical nature of the PMEL N-terminal region and identify several residues essential for PMEL amyloidogenesis.


2010 ◽  
Vol 432 (3) ◽  
pp. 557-566 ◽  
Author(s):  
Emily R. Slepkov ◽  
Alan Pavinski Bitar ◽  
Hélène Marquis

The intracellular bacterial pathogen Listeria monocytogenes secretes a broad-range phospholipase C enzyme called PC-PLC (phosphatidylcholine phospholipase C) whose compartmentalization and enzymatic activity is regulated by a 24-amino-acid propeptide (Cys28–Ser51). During intracytosolic multiplication, bacteria accumulate the proform of PC-PLC at their membrane–cell-wall interface, whereas during cell-to-cell spread vacuolar acidification leads to maturation and rapid translocation of PC-PLC across the cell wall in a manner that is dependent on Mpl, the metalloprotease of Listeria. In the present study, we generated a series of propeptide mutants to determine the minimal requirement to prevent PC-PLC enzymatic activity and to identify residues regulating compartmentalization and maturation. We found that a single residue at position P1 (Ser51) of the cleavage site is sufficient to prevent enzymatic activity, which is consistent with P1′ (Trp52) being located within the active-site pocket. We observed that mutants with deletions at the N-terminus, but not the C-terminus, of the propeptide are translocated across the cell wall more effectively than wild-type PC-PLC at a physiological pH, and that individual amino acid residues within the N-terminus influence Mpl-mediated maturation of PC-PLC at acidic pH. However, deletion of more than 75% of the propeptide was required to completely prevent Mpl-mediated maturation of PC-PLC. These results indicate that the N-terminus of the propeptide regulates PC-PLC compartmentalization and that specific residues within the N-terminus influence the ability of Mpl to mediate PC-PLC maturation, although a six-residue propeptide is sufficient for Mpl to mediate PC-PLC maturation.


Microbiology ◽  
2014 ◽  
Vol 160 (1) ◽  
pp. 142-148 ◽  
Author(s):  
Brian M. Forster ◽  
Alan Pavinski Bitar ◽  
Hélène Marquis

Mpl, a thermolysin-like metalloprotease, and PC-PLC, a phospholipase C, are synthesized as proenzymes by the intracellular bacterial pathogen Listeria monocytogenes. During intracellular growth, L. monocytogenes is temporarily confined in a membrane-bound vacuole whose acidification leads to Mpl autolysis and Mpl-mediated cleavage of the PC-PLC N-terminal propeptide. Mpl maturation also leads to the secretion of both Mpl and PC-PLC across the bacterial cell wall. Previously, we identified negatively charged and uncharged amino acid residues within the N terminus of the PC-PLC propeptide that influence the ability of Mpl to mediate the maturation of PC-PLC, suggesting that these residues promote the interaction of the PC-PLC propeptide with Mpl. In the present study, we identified a non-catalytic histidine residue (H226) that influences Mpl secretion across the cell wall and its ability to process PC-PLC. Our results suggest that a positive charge at position 226 is required for Mpl functions other than autolysis. Based on the charge requirement at this position, we hypothesize that this residue contributes to the interaction of Mpl with the PC-PLC propeptide.


Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 549-562
Author(s):  
Uffe H Mortensen ◽  
Naz Erdeniz ◽  
Qi Feng ◽  
Rodney Rothstein

Abstract Rad52 is a DNA-binding protein that stimulates the annealing of complementary single-stranded DNA. Only the N terminus of Rad52 is evolutionarily conserved; it contains the core activity of the protein, including its DNA-binding activity. To identify amino acid residues that are important for Rad52 function(s), we systematically replaced 76 of 165 amino acid residues in the N terminus with alanine. These substitutions were examined for their effects on the repair of γ-ray-induced DNA damage and on both interchromosomal and direct repeat heteroallelic recombination. This analysis identified five regions that are required for efficient γ-ray damage repair or mitotic recombination. Two regions, I and II, also contain the classic mutations, rad52-2 and rad52-1, respectively. Interestingly, four of the five regions contain mutations that impair the ability to repair γ-ray-induced DNA damage yet still allow mitotic recombinants to be produced at rates that are similar to or higher than those obtained with wild-type strains. In addition, a new class of separation-of-function mutation that is only partially deficient in the repair of γ-ray damage, but exhibits decreased mitotic recombination similar to rad52 null strains, was identified. These results suggest that Rad52 protein acts differently on lesions that occur spontaneously during the cell cycle than on those induced by γ-irradiation.


2019 ◽  
Vol 151 (7) ◽  
pp. 944-953
Author(s):  
Jae Seung Lee ◽  
Hae-Jin Kweon ◽  
Hyosang Lee ◽  
Byung-Chang Suh

Acid-sensing ion channels (ASICs), sensory molecules that continuously monitor the concentration of extracellular protons and initiate diverse intracellular responses through an influx of cations, are assembled from six subtypes that can differentially combine to form various trimeric channel complexes and elicit unique electrophysiological responses. For instance, homomeric ASIC1a channels have been shown to exhibit prolonged desensitization, and acid-evoked currents become smaller when the channels are repeatedly activated by extracellular protons, whereas homomeric or heteromeric ASIC2a channels continue to respond to repetitive acidic stimuli without exhibiting such desensitization. Although previous studies have provided evidence that both the desensitization of ASIC1a and rapid resensitization of ASIC2a commonly require domains that include the N terminus and the first transmembrane region of these channels, the biophysical basis of channel gating at the amino acid level has not been clearly determined. Here, we confirm that domain-swapping mutations replacing the N terminus of ASIC2a with that of ASIC2b result in de novo prolonged desensitization in homomeric channels following activation by extracellular protons. Such desensitization of chimeric ASIC2a mutants is due neither to internalization nor to degradation of the channel proteins. We use site-directed mutagenesis to narrow down the relevant portion of the N terminus of ASIC2a, identifying three amino acid residues within the N terminus (T25, T39, and I40) whose mutation is sufficient to phenocopy the desensitization exhibited by the chimeric mutants. A similar desensitization is observed in heteromeric ASICs containing the mutant subunit. These results suggest that T25, T39, and I40 of ASIC2a are key residues determining the rapid resensitization of homomeric and heteromeric ASIC2a channels upon proton activation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2248-2248
Author(s):  
Lydia Castro-Núñez ◽  
Esther Bloem ◽  
Carmen van der Zwaan ◽  
Koen Mertens ◽  
Alexander B Meijer

Abstract Abstract 2248 Factor VIII (FVIII) circulates in a tight complex with its carrier protein von Willebrand factor (VWF). Activation of FVIII results in the dissociation of the FVIII-VWF complex after which FVIII can perform its role in the coagulation cascade. In the complex with VWF, FVIII is protected from rapid clearance from the circulation. Individuals with a mutation in VWF that impairs the ability of VWF to bind FVIII can therefore have a bleeding disorder caused by a low plasma level of FVIII. Mature VWF contains multiple domains of which the N-terminal D'-D3 domains have been shown to comprise the FVIII binding site. Detailed information about amino acid regions in VWF that contribute to the direct interaction with FVIII is, however, lacking. In the present study we have employed a chemical footprinting approach to identify amino acid regions of VWF that are involved in binding FVIII. To this end, the lysine amino acid residues of VWF were chemically modified in the presence of FVIII or activated FVIII. VWF was subsequently cleaved into peptides employing chymotrypsin. The identity of the peptides and whether or not they contained a modified lysine residue was assessed by nanoLC mass spectrometry. The results showed that the lysine residues of almost all identified peptides were modified to the same extent upon incubation of VWF with FVIII or activated FVIII. However, lysine residue 773 in the N-terminal peptide comprising the residues 766-SCRPPMVKL-774 was protected from chemical modification in the presence of FVIII. In addition, a peptide was identified in which the free amine group of serine 764 at the start of the D' domain was also differentially modified in the presence of FVIII or activated FVIII. We next studied the structure of a molecular model of the D' domain that was obtained by comparative homology modeling. Structure analysis revealed that the N-terminal region 764–773 is situated at the tip of the D' domain and that the amino acid residues Ser764 and Lys773 are in close proximity. This observation combined with the results obtained with the chemical footprinting approach implies that the residues Ser764 and Lys773 at the N-terminus of VWF are directly involved in the FVIII-VWF complex formation. Alternatively, upon binding of FVIII, there is a conformational change in this N-terminal region resulting into a differential accessibility of these residues for chemical modification. To further investigate on this issue, we constructed recombinant VWF variants in which the lysine residue 773 and the serine residue at position 764 were replaced by alanines. The variants Ser764Ala, Lys773Ala and WT-VWF were expressed in 293 cells and purified. The binding of Ser764Ala and Lys773Ala to FVIII was evaluated employing surface plasmon resonance (SPR) analysis. The data revealed that the N-terminal region of the VWF D' domain modulates the interaction with FVIII. The contribution of Ser764 and Lys733 was mainly reflected in the dissociation kinetics of the complex. We also assessed the association of the VWF variants to FVIII in a solid phase binding assay. In addition, we evaluated to what extent the VWF variants can compete with WT-VWF for binding FVIII. The results were in agreement with the findings obtained with SPR analysis, and demonstrated a modulatory role of the residues 764 and 773. Taken together, our data reveal that the residues Ser764 and Lys773 at the N-terminus of mature VWF contribute to the affinity of the FVIII-VWF complex. Disclosures: No relevant conflicts of interest to declare.


1991 ◽  
Vol 277 (1) ◽  
pp. 39-45 ◽  
Author(s):  
D Carré-Eusèbe ◽  
F Lederer ◽  
K H D Lê ◽  
S M Elsevier

Protamine P2, the major basic chromosomal protein of mouse spermatozoa, is synthesized as a precursor almost twice as long as the mature protein, its extra length arising from an N-terminal extension of 44 amino acid residues. This precursor is integrated into chromatin of spermatids, and the extension is processed during chromatin condensation in the haploid cells. We have studied processing in the mouse and have identified two intermediates generated by proteolytic cleavage of the precursor. H.p.l.c. separated protamine P2 from four other spermatid proteins, including the precursor and three proteins known to possess physiological characteristics expected of processing intermediates. Peptide mapping indicated that all of these proteins were structurally similar. Two major proteins were further purified by PAGE, transferred to poly(vinylidene difluoride) membranes and submitted to automated N-terminal sequence analysis. Both sequences were found within the deduced sequence of the precursor extension. The N-terminus of the larger intermediate, PP2C, was Gly-12, whereas the N-terminus of the smaller, PP2D, was His-21. Both processing sites involved a peptide bond in which the carbonyl function was contributed by an acidic amino acid.


Sign in / Sign up

Export Citation Format

Share Document