Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5′-UTR intron

2006 ◽  
Vol 276 (4) ◽  
pp. 351-368 ◽  
Author(s):  
Mi Jung Kim ◽  
Heeja Kim ◽  
Jeong Sheop Shin ◽  
Chung-Han Chung ◽  
John B. Ohlrogge ◽  
...  
Blood ◽  
1995 ◽  
Vol 85 (2) ◽  
pp. 319-329 ◽  
Author(s):  
S Dziennis ◽  
RA Van Etten ◽  
HL Pahl ◽  
DL Morris ◽  
TL Rothstein ◽  
...  

Abstract CD11b is the alpha chain of the Mac-1 integrin and is preferentially expressed in myeloid cells (neutrophils, monocytes, and macrophages). We have previously shown that the CD11b promoter directs cell-type- specific expression in myeloid lines using transient transfection assays. To confirm that these promoter sequences contain the proper regulatory elements for correct myeloid expression of CD11b in vivo, we have used the -1.7-kb human CD11b promoter to direct reporter gene expression in transgenic mice. Stable founder lines were generated with two different reporter genes, a Thy 1.1 surface marker and the Escherichia coli lacZ (beta-galactosidase) gene. Analysis of founders generated with each reporter demonstrated that the CD11b promoter was capable of driving high levels of transgene expression in murine macrophages for the lifetime of the animals. Similar to the endogenous gene, transgene expression was preferentially found in mature monocytes, macrophages, and neutrophils and not in myeloid precursors. These experiments indicate that the -1.7 CD11b promoter contains the regulatory elements sufficient for high-level macrophage expression. This promoter should be useful for targeting heterologous gene expression to mature myeloid cells.


2000 ◽  
Vol 28 (6) ◽  
pp. 947-950 ◽  
Author(s):  
M. Smith ◽  
H. Moon ◽  
L. Kunst

Seed-specific expression in Arabidopsis thaliana of oleate hydroxylase enzymes from castor bean and Lesquerella fendleri resulted in the accumulation of hydroxy fatty acids in the seed oil. By using various Arabidopsis mutant lines it was shown that the endoplasmic reticulum (ER) n–-3 desaturase (FAD3) and the FAE1 condensing enzyme are involved in the synthesis of polyunsaturated and very-long-chain hydroxy fatty acids, respectively. In Arabidopsis plants with an active ER Δ12-oleate desaturase the presence of hydroxy fatty acids corresponded to an increase in the levels of 18:1 and a decrease in 18:2 levels. Expression in yeast indicates that the castor hydroxylase also has a low level of desaturase activity.


1995 ◽  
Vol 145 (5-6) ◽  
pp. 600-605 ◽  
Author(s):  
Andrew N. Nunberg ◽  
Zhuwen Li ◽  
Hwa-Jee Chung ◽  
Avutu S. Reddy ◽  
Terry L. Thomas

1992 ◽  
Vol 286 (1) ◽  
pp. 179-185 ◽  
Author(s):  
C P Simkevich ◽  
J P Thompson ◽  
H Poppleton ◽  
R Raghow

The transcriptional activity of plasmid pCOL-KT, in which human pro alpha 1 (I) collagen gene upstream sequences up to -804 and most of the first intron (+474 to +1440) drive expression of the chloramphenicol acetyltransferase (CAT) gene [Thompson, Simkevich, Holness, Kang & Raghow (1991) J. Biol. Chem. 266, 2549-2556], was tested in a number of mesenchymal and non-mesenchymal cells. We observed that pCOL-KT was readily expressed in fibroblasts of human (IMR-90 and HFL-1), murine (NIH 3T3) and avian (SL-29) origin and in a human rhabdomyosarcoma cell line (A204), but failed to be expressed in human erythroleukaemia (K562) and rat pheochromocytoma (PC12) cells, indicating that the regulatory elements required for appropriate tissue-specific expression of the human pro alpha 1 (I) collagen gene were present in pCOL-KT. To delineate the nature of cis-acting sequences which determine the tissue specificity of pro alpha 1 (I) collagen gene expression, functional consequences of deletions in the promoter and first intron of pCOL-KT were tested in various cell types by transient expression assays. Cis elements in the promoter-proximal and intronic sequences displayed either a positive or a negative influence depending on the cell type. Thus deletion of fragments using EcoRV (nt -625 to -442 deleted), XbaI (-804 to -331) or SstII (+670 to +1440) resulted in 2-10-fold decreased expression in A204 and HFL-1 cells. The negative influences of deletions in the promoter-proximal sequences was apparently considerably relieved by deleting sequences in the first intron, and the constructs containing the EcoRV/SstII or XbaI/SstII double deletions were expressed to a much greater extent than either of the single deletion constructs. In contrast, the XbaI* deletion (nt -804 to -609), either alone or in combination with the intronic deletion, resulted in very high expression in all cells regardless of their collagen phenotype; the XbaI*/(-SstII) construct, which contained the intronic SstII fragment (+670 to +1440) in the reverse orientation, was not expressed in either mesenchymal or nonmesenchymal cells. Based on these results, we conclude that orientation-dependent interactions between negatively acting 5′-upstream sequences and the first intron determine the mesenchymal cell specificity of human pro alpha 1 (I) collagen gene transcription.


1988 ◽  
Vol 8 (12) ◽  
pp. 5072-5079 ◽  
Author(s):  
P L Hallauer ◽  
K E Hastings ◽  
A C Peterson

We have produced seven lines of transgenic mice carrying the quail gene encoding the fast skeletal muscle-specific isoform of troponin I (TnIf). The quail DNA included the entire TnIf gene, 530 base pairs of 5'-flanking DNA, and 1.5 kilobase pairs of 3'-flanking DNA. In all seven transgenic lines, normally initiated and processed quail TnIf mRNA was expressed in skeletal muscle, where it accumulated to levels comparable to that in quail muscle. Moreover, in the three lines tested, quail TnIf mRNA levels were manyfold higher in a fast skeletal muscle (gastrocnemius) than in a slow skeletal muscle (soleus). We conclude that the cellular mechanisms directing muscle fiber type-specific TnIf gene expression are mediated by cis-regulatory elements present on the introduced quail DNA fragment and that they control TnIf expression by affecting the accumulation of TnIf mRNA. These elements have been functionally conserved since the evolutionary divergence of birds and mammals, despite the major physiological and morphological differences existing between avian (tonic) and mammalian (twitch) slow muscles. In lines of transgenic mice carrying multiple tandemly repeated copies of the transgene, an aberrant quail TnIf transcript (differing from normal TnIf mRNA upstream of exon 2) also accumulated in certain tissues, particularly lung, brain, spleen, and heart tissues. However, this aberrant transcript was not detected in a transgenic line which carries only a single copy of the quail gene.


1990 ◽  
Vol 10 (9) ◽  
pp. 4690-4700
Author(s):  
B Peers ◽  
M L Voz ◽  
P Monget ◽  
M Mathy-Hartert ◽  
M Berwaer ◽  
...  

We have performed transfection and DNase I footprinting experiments to investigate pituitary-specific expression of the human prolactin (hPRL) gene. When fused to the chloramphenicol acetyltransferase (CAT) reporter gene, 5,000 base pairs of the 5'-flanking sequences of the hPRL gene were able to drive high cat gene expression in prolactin-expressing GH3B6 cells specifically. Deletion analysis indicated that this pituitary-specific expression was controlled by three main positive regulatory regions. The first was located just upstream from the TATA box between coordinates -40 and -250 (proximal region). We have previously shown that three motifs of this region bind the pituitary-specific Pit-1 factor. The second positive region was located in the vicinity of coordinates -1300 to -1750 (distal region). DNase I footprinting assays revealed that eight DNA motifs of this distal region bound protein Pit-1 and that two other motifs were recognized by ubiquitous factors, one of which seems to belong to the AP-1 (jun) family. The third positive region was located further upstream, between -3500 and -5000 (superdistal region). This region appears to enhance transcription only in the presence of the distal region.


1986 ◽  
Vol 6 (11) ◽  
pp. 3798-3806
Author(s):  
L E Babiss ◽  
J M Friedman ◽  
J E Darnell

In the accompanying paper (Friedman et al., Mol. Cell. Biol. 6:3791-3797, 1986), hepatoma-specific expression of the rat albumin promoter within the adenovirus genome was demonstrated. However, the rate of transcription was very low compared with that of the endogenous chromosomal albumin gene. Here we show that in hepatoma cells the adenovirus E1A enhancer, especially in the presence of E1A protein, greatly stimulates transcription from the albumin promoter but not the mouse beta-globin promoter. This enhancer-dependent stimulation did not occur in myeloma cells in which a virus containing a immunoglobulin promoter and enhancer did function. These experiments suggest a limited distribution in cultured differentiated cells of cell-specific transcription factors. However, either the regulation of such cell-specific factors breaks down in other cultured cells, or strictly cell-specific factors are not at play in controlling cell-specific transcription, because HeLa cells could transcribe the albumin promoter from the same start site about 10% as well as hepatomas could and 293 cells could transcribe both albumin and globin promoters.


Sign in / Sign up

Export Citation Format

Share Document