scholarly journals Endothelial cells and coagulation

Author(s):  
Katharina Neubauer ◽  
Barbara Zieger

AbstractEndothelial cells form a monolayer, which lines blood vessels. They are crucially involved in maintaining blood fluidity and providing controlled vascular hemostasis at sites of injury. Thereby endothelial cells facilitate multiple mechanisms, including both procoagulant and anticoagulant, which must be kept in balance. Under physiological conditions, endothelial cells constitute a nonadhesive surface preventing activation of platelets and the coagulation cascade. Multiple fibrinolytic and antithrombotic properties act on their cell surface contributing to the maintenance of blood fluidity. These include platelet inhibition, the heparin-antithrombin III system, tissue factor pathway inhibition, thrombomodulin/protein C system, and fibrinolytic qualities. At sites of vascular damage, platelets react immediately by adhering to the exposed extracellular matrix, followed by platelet-platelet interactions to form a clot that effectively seals the injured vessel wall to prevent excessive blood loss. For solid thrombus formation, functional platelets are essential. In this process, endothelial cells serve as a support surface for formation of procoagulant complexes and clotting. This review gives an overview about the central role of the endothelium as a dynamic lining which controls the complex interplay of the coagulation system with the surrounding cells.


2016 ◽  
Vol 23 (8) ◽  
pp. 922-927 ◽  
Author(s):  
Jan F. Vojacek

Present review highlights some new aspects of the role of individual components of blood coagulation process and proposes a modified concept of hemocoagulation cascade. The role of FXII in the initiation of the so-called intrinsic coagulation system is currently questioned. Its role has been recently demonstrated mainly in the thrombus propagation and final stabilization together with factors XI and XIII. The edited concept underlines the common part of the tissue factor (TF) in the initiation of both the intrinsic and extrinsic pathways of the coagulation system and therefore may make it not improperly be called the TF coagulation pathway. The search for new antithrombotic agents shows that the level of the coagulation system blockade depends on which step in the coagulation cascade is targeted and results in different degrees of the antithrombotic efficiency and the risk of bleeding complications.



Author(s):  
Dina Vara ◽  
Reiner K. Mailer ◽  
Anuradha Tarafdar ◽  
Nina Wolska ◽  
Marco Heestermans ◽  
...  

Objective: Using 3KO (triple NOX [NADPH oxidase] knockout) mice (ie, NOX1 −/− /NOX2 −/− /NOX4 −/− ), we aimed to clarify the role of this family of enzymes in the regulation of platelets in vitro and hemostasis in vivo. Approach and Results: 3KO mice displayed significantly reduced platelet superoxide radical generation, which was associated with impaired platelet aggregation, adhesion, and thrombus formation in response to the key agonists collagen and thrombin. A comparison with single-gene knockouts suggested that the phenotype of 3KO platelets is the combination of the effects of the genetic deletion of NOX1 and NOX2, while NOX4 does not show any significant function in platelet regulation. 3KO platelets displayed significantly higher levels of cGMP—a negative platelet regulator that activates PKG (protein kinase G). The inhibition of PKG substantially but only partially rescued the defective phenotype of 3KO platelets, which are responsive to both collagen and thrombin in the presence of the PKG inhibitors KT5823 or Rp-8-pCPT-cGMPs, but not in the presence of the NOS (NO synthase) inhibitor L-NG-monomethyl arginine. In vivo, triple NOX deficiency protected against ferric chloride–driven carotid artery thrombosis and experimental pulmonary embolism, while hemostasis tested in a tail-tip transection assay was not affected. Procoagulatory activity of platelets (ie, phosphatidylserine surface exposure) and the coagulation cascade in platelet-free plasma were normal. Conclusions: This study indicates that inhibiting NOXs has strong antithrombotic effects partially caused by increased intracellular cGMP but spares hemostasis. NOXs are, therefore, pharmacotherapeutic targets to develop new antithrombotic drugs without bleeding side effects.



2019 ◽  
Vol 39 (02) ◽  
pp. 128-139 ◽  
Author(s):  
Magdalena L. Bochenek ◽  
Katrin Schäfer

AbstractHaemostasis encompasses a set of strictly regulated actions, such as vasoconstriction, platelet activation and blood coagulation. Endothelial cells play a crucial role in all of these processes and are an integral part of the vascular response to injury resulting in thrombus formation. Healthy endothelium expresses mediators to prevent platelet activation, including prostacyclin and nitric oxide, and to inhibit coagulation, such as thrombomodulin or RNase1. Upon activation, endothelial cells expose von Willebrand factor, integrins and other receptors to interact with activated platelets, erythrocytes and coagulation factors, respectively, resulting in blood clot formation. The endothelial cell response to cytokines and growth factors released from activated platelets and immune cells abundantly present in arterial and venous thrombi also plays an important role for thrombus resolution, whereas failure to completely resolve thrombi may initiate fibrotic remodelling and chronic vascular occlusion both in the arterial and venous tree. Therefore, endothelial cells are increasingly recognized as potential target to prevent thrombotic events and to accelerate thrombus resolution. Here, we discuss recent publications from our group in the context of other studies on the role of the endothelium during acute and chronic thrombotic events.



Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3568-3578 ◽  
Author(s):  
John-Bjarne Hansen ◽  
Randi Olsen ◽  
Paul Webster

AbstractTissue factor pathway inhibitor (TFPI) is a serine protease inhibitor of the extrinsic coagulation system, synthesized in endothelial cells, which has recently been shown to play an important role in the regulation of activated coagulation factors at the endothelial cell surface. In the present study we investigated the subcellular localization and metabolism of TFPI in human umbilical vein endothelial cells (HUVEC). Immunocytochemical labeling of HUVEC with anti-TFPI showed specific labeling associated with the cell surface and with many intracellular organelles including the Golgi complex. Further characterization of these organelles was performed by colocalizing the anti-TFPI with 3-(2,4-dinitroanilino)′-amino-N-methyldipropylamine (DAMP; to demonstrate low pH), mannose phosphate receptor (endosomes), and LAMP 1 (late endocytic compartments). TFPI also colocalized with antibodies to the human transferrin receptor, a marker for early endocytic, recycling compartment. Endogenous TFPI colocalized with biotin in intracellular vesicles during endocytosis after biotinylation of the cell surface, which indicated that TFPI was being co-internalized with the surface biotin. The binding of exogenously added 125I-TFPI increased linearly to HUVEC over the concentration range of 0 to 32 nmol/L without saturation, the binding was not affected by up to a thousand-fold molar excess of unlabeled TFPI, and heparin inhibited the binding dose dependently. An intact C-terminal domain was important for the interaction between TFPI and the cell surface of HUVEC, because less than 10% of a C-terminal truncated form of TFPI (TFPI1-161 ) was bound after addition of equimolar concentrations of full-length TFPI. Exogenously added 125I-TFPI was not degraded in HUVEC during 4 hours at 37°C. The presence of TFPI in endocytic and recycling compartments support the hypothesis that endogenous, membrane-anchored TFPI could be internalized for subsequent recycling back to the cell surface.



Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 15-15
Author(s):  
Chao Fang ◽  
Sheryl R. Bowley ◽  
Barbara C. Furie ◽  
Bruce Furie

Abstract Protein disulfide isomerase (PDI), secreted by platelets and endothelial cells upon vascular injury, is required for thrombus formation. However, the precise mechanism by which PDI regulates thrombosis remains elusive. Using PDI variants that form stable mixed disulfide complexes with their substrates, we performed kinetic trapping experiment in platelet rich plasma and identified multiple substrate proteins for PDI, including vitronectin. Importantly, when using variants of endoplasmic reticulum protein 57 (ERp57), a thiol isomerase that has a similar domain structure as PDI and is also important for thrombus formation, the trapping mutants of ERp57 do not interact with vitronectin. This result has demonstrated the substrate specificity of PDI during our kinetic trapping experiment. Further study using polyethylene glycol (PEG)-based gel mobility shift assay combined with mass spectrometry has identified the redox reaction between PDI and vitronectin occurs on two disulfide bonds Cys 137-161 and Cys 274-453 in the hemopexin-like domains of plasma vitronectin. Vitronectin, as a substrate of extracellular PDI, has been shown to be important for thrombus formation. Vitronectin null mice have reduced platelet accumulation and fibrin deposition in the cremaster arterioles following laser injury. Vitronectin null mice also have significantly prolonged large-vessel thrombosis in the carotid artery using the ferric chloride thrombosis model. Using intravital microscopy we showed that vitronectin rapidly accumulates in a growing thrombus following vessel injury. When mice are treated with eptifibatide to eliminate platelet accumulation, we still observe significant amount of vitronectin accumulation on the vessel wall in the absence of platelet thrombus. This observation was further confirmed using confocal intravital microscopy. After 3D reconstruction of a growing thrombus in mouse cremaster arteriole, vitronectin was identified to locate primarily on the CD31 stained vessel wall. These combined studies suggest that plasma-derived vitronectin and not platelet-derived vitronectin is the primary substrate of PDI. Our study further showed that the indispensable role of vitronectin to a growing thrombus depends on extracellular PDI. Native plasma vitronectin does not bind to αvβ3 or αIIbβ3-integrins on endothelial cells and platelets. On solid phase binding assay, plasma sample pre-treated with wild-type PDI showed significantly increased binding of vitronectin to its ligand αvβ3 or αIIbβ3-integrins. However, this increase was not observed in plasma pre-treated with dead-mutant PDI or ERp57. In addition, using immunofluorescent staining, PDI treated plasma sample also showed significantly increased binding of vitronectin to activated human umbilical vein endothelial cells (HUVECs) and this binding was abrogated by RGD peptides or an αvβ3 blocking antibody. The critical role of extracellular PDI for the regulation of vitronectin in a growing thrombus was further confirmed in our in vivo studies. When mice were treated with quecetin-3-rutinoside or two different inhibitory antibodies that selectively block PDI activity, the accumulation of vitronectin and platelets was significantly reduced. These combined results demonstrate that extracellular PDI regulates vitronectin in a growing thrombus to promote platelet accumulation and fibrin generation. In summary, our studies have revealed a novel regulatory mechanism during the initiation of thrombus formation. Under normal physiologic conditions in the absence of secreted PDI, thrombus formation is suppressed and maintains a quiescent, patent vasculature. The release of PDI during vascular injury serves as a novel regulatory switch that allows activation of proteins, including vitronectin, which are critical for the following platelet accumulation and fibrin generation. Figure. Figure. Disclosures No relevant conflicts of interest to declare.



Blood ◽  
2012 ◽  
Vol 120 (10) ◽  
pp. 2133-2143 ◽  
Author(s):  
Roxane Darbousset ◽  
Grace M. Thomas ◽  
Soraya Mezouar ◽  
Corinne Frère ◽  
Rénaté Bonier ◽  
...  

AbstractFor a long time, blood coagulation and innate immunity have been viewed as interrelated responses. Recently, the presence of leukocytes at the sites of vessel injury has been described. Here we analyzed interaction of neutrophils, monocytes, and platelets in thrombus formation after a laser-induced injury in vivo. Neutrophils immediately adhered to injured vessels, preceding platelets, by binding to the activated endothelium via leukocyte function antigen-1–ICAM-1 interactions. Monocytes rolled on a thrombus 3 to 5 minutes postinjury. The kinetics of thrombus formation and fibrin generation were drastically reduced in low tissue factor (TF) mice whereas the absence of factor XII had no effect. In vitro, TF was detected in neutrophils. In vivo, the inhibition of neutrophil binding to the vessel wall reduced the presence of TF and diminished the generation of fibrin and platelet accumulation. Injection of wild-type neutrophils into low TF mice partially restored the activation of the blood coagulation cascade and accumulation of platelets. Our results show that the interaction of neutrophils with endothelial cells is a critical step preceding platelet accumulation for initiating arterial thrombosis in injured vessels. Targeting neutrophils interacting with endothelial cells may constitute an efficient strategy to reduce thrombosis.



Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2065-2065
Author(s):  
Tanja Knopp ◽  
Jeremy Lagrange ◽  
Rebecca Jung ◽  
Johannes Wild ◽  
Heidi Rossmann ◽  
...  

Abstract Introduction: Pro-inflammatory cytokines play an essential role as activators of the hemostatic system and in the regulation of physiological antithrombotic mechanisms. Interleukin-6 (IL-6) influences platelet production and platelet activation. It was associated with accelerated clotting and intravascular coagulation in tissue factor (TF)-driven murine thrombosis models. However, the precise role of myeloid cell-derived IL-6 on thrombosis formation and the hemostatic system is still unknown. Methods and Results: To better understand the role of IL-6 in thrombosis and the hemostatic system, we developed a new mouse strain with Cre-recombinase driven constitutive IL-6 expression specifically in myeloid cells (LysM-IL-6 OE, Control mice: IL-6 OE). LysM-IL-6 OE mice had a prolonged tail bleeding time and lacked venous thrombus formation induced by inferior vena cava (IVC) stenosis. There were no differences in D-Dimer levels in LysM-IL-6 OE mice neither on baseline level nor after IVC ligation. However, we found unstoppable post-operative bleedings in LysM-IL-6 OE. They showed a prolonged aPTT, a significantly increased INR and a prolonged thrombin converting time. The Factor V and IX expression were reduced, but von Willebrand factor, antithrombin and fibrinogen expression were up-regulated and could not explain the missing thrombus formation. We found significantly elevated erythrocyte sedimentation in line with erythrocytes aggregates, which seemed to be mediated by IL-6 and α2M. Most importantly, hepatic levels of thrombin inhibitor α2 macroglobulin (α2M) mRNA and protein were increased in LysM-IL-6 OE/+ mice compared to control mice. In parallel, Platelet erythrocyte interaction seemed to be essential in the development of the bleeding phenotype. Conclusions: These findings show the role of chronically elevated IL-6 in driving the accumulation of A2m on the surface of erythrocytes, thereby mediating a phenotype of increased bleeding complications. This work was supported by the DFG KA4035/1-1 and by the German Ministry for Education and Research (BMBF 01EO1503) Disclosures Lämmle: Takeda: Membership on an entity's Board of Directors or advisory committees; Ablynx: Membership on an entity's Board of Directors or advisory committees, Other: Travel Support, Speakers Bureau; Baxter: Other: Travel Support, Speakers Bureau; Alexion: Other: Travel Support, Speakers Bureau; Siemens: Other: Travel Support, Speakers Bureau; Bayer: Other: Travel Support, Speakers Bureau; Roche: Other: Travel Support, Speakers Bureau; Sanofi: Other: Travel Support, Speakers Bureau. Ruf: ARCA bioscience: Consultancy, Patents & Royalties; ICONIC Therapeutics: Consultancy; MeruVasimmune: Current holder of individual stocks in a privately-held company.



Author(s):  
Lucas Barbosa ◽  
Thaynan Lopes ◽  
Luanna Araujo ◽  
Luciane Rosario ◽  
Valeria Ferrer

Angiotensin-converting enzyme 2 (ACE2) is an important player of the renin-angiotensin-aldosterone system (RAAS) in regulating the conversion of angiotensin II into angiotensin (1-7). While expressed on the surface of human cells, such as lung, heart, kidney, neurons, and endothelial cells (EC), ACE2 is the entry receptor for SARS-CoV-2. Here, we would like to highlight that ACE2 is predominant on the EC membrane. Many of coronavirus disease 2019 (COVID-19) symptoms have been associated with the large recruitment of immune cells, directly affecting EC. Additionally, cytokines, hypoxia, and complement activation can trigger the activation of EC leading to the coagulation cascade. The EC dysfunction plus the inflammation due to SARS-CoV-2 infection may lead to abnormal coagulation, actively participating in thrombo-inflammatory processes resulting in vasculopathy and indicating poor prognosis in patients with COVID-19. Considering the intrinsic relationship between EC and the pathophysiology of SARS-CoV-2, EC-associated therapies such as anticoagulants, fibrinolytic drugs, immunomodulators, and molecular therapies have been proposed. In this review, we will discuss the role of EC in the lung inflammation and edema, in the disseminate coagulation process, ACE2 positive cancer patients, and current and future EC-associated therapies to treat COVID-19.



2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Yiwei Liu ◽  
Lingxin Zhang ◽  
Chuan Wang ◽  
Shama Roy ◽  
Jianzhong Shen

Previously we reported that the P2Y2 receptor (P2Y2R) is one of the predominant purinergic receptors expressed in human coronary artery endothelial cells (HCAEC), and that P2Y2R activation by ATP or UTP induces dramatic up-regulation of tissue factor (TF), key initiator of the coagulation cascade. However, the molecular mechanism of this P2Y2R-TF axis remains unclear. Here we report a role of a newly identified AP-1 consensus sequence along with its new binding components in P2Y2R regulation of TF transcription. We identified with bioinformatics tools that a novel AP-1 site at -1363 bp of human TF promoter region is highly conserved across multiple species. P2Y2R activation increased TF promoter activity and mRNA expression in HCAEC. Truncation, deletion, and mutation of this new distal AP-1 site all significantly supressed TF promoter activity in response to P2Y2R activation. EMSA and ChIP assays further confirmed that upon P2Y2R activation, c-Jun, ATF-2 and Fra-1, but not the typical c-Fos, bound to the new AP-1 site. In addition, loss-of-function studies using siRNAs confirmed a positive transactivation role of c-Jun and ATF-2, but unexpectedly revealed a strong negative role of Fra-1 in P2Y2R-induced TF up-regulation. Furthermore, we found that P2Y2R activation promoted ERK1/2 phosphorylation, leading to Fra-1 activation while JNK activated c-Jun and ATF-2. These findings reveal the basis for P2Y purinergic receptor regulation of endothelial TF expression and indicate that targeting the P2Y2R-Fra-1-TF pathway may be an attractive new strategy in control of vascular thrombogenicity and/or inflammation associated with endothelial dysfunction.



Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1600-1600
Author(s):  
Eric S. Mullins ◽  
Matthew J. Flick ◽  
Keith W. Kombrinck ◽  
Sandra J. Degen ◽  
William Sun ◽  
...  

Abstract Thrombin is the core protease in the hemostatic system. Thrombin directs thrombus formation through the proteolytic conversion of fibrinogen to fibrin and the local activation of protease-activated receptors on platelets and other cells. In addition, thrombin controls the coagulation system through the activation of fXI, protein C and other key hemostatic factors. Interestingly, the biological role of thrombin is seemingly not limited to the maintenance of vascular integrity. There is appreciable evidence that thrombin-mediated proteolysis plays an important role in development, the inflammatory response, tissue repair, tumor cell metastasis and other physiological and pathological processes. Unfortunately, the embryonic and perinatal lethal phenotype previously described in prothrombin null (fII−/−) mice limited the utility of those knockout animals in better defining the larger role of fII in vivo. In order to develop the means to explore the importance of thrombin in disease processes within adult animals, a mouse line was generated carrying a conditional (“floxed”) fII knockout allele (fIIfx mice). Homozygous fIIfx/fx mice and compound heterozygous mice carrying one fII floxed allele and one fII null allele (fIIfx/− mice) developed to term, were present in offspring in the expected Mendelian frequencies, survived to adulthood and retained normal reproductive success. In the absence of Cre-mediated recombination, fIIfx/− mice maintained circulating fII levels that were low (approximately 10% of normal), but spontaneous bleeding events were never encountered in these animals. Studies of fIIfx/− mice carrying a Cre recombinase transgene known to be constitutively expressed in the liver showed that prothrombin levels can be reduced to levels incompatible with post-natal survival. More sophisticated studies using the polyI:C-inducible Mx-Cre system revealed that unchallenged Mx-Cre+/fIIfx/− mice consistently survived to adulthood. However, induction of Cre under conditions that result in near-complete recombination of target floxed alleles within the liver resulted in the development of spontaneous bleeding events and death within 7 days. Multiple sites of hemorrhage were evident in these challenged adults, including lower gastrointestinal and intracranial sites of bleeding. Immunological analysis of plasma collected from these animals revealed that they carried levels of fII below current detection limits (< 1% of normal). Studies are underway to establish both the lowest level of plasma fII compatible with long-term survival and define the effects of extremely low fII levels on disease processes in vivo.



Sign in / Sign up

Export Citation Format

Share Document