Biogeographical patterns and co-occurrence of pathogenic infection across island populations of Berthelot’s pipit (Anthus berthelotii)

Oecologia ◽  
2011 ◽  
Vol 168 (3) ◽  
pp. 691-701 ◽  
Author(s):  
Lewis G. Spurgin ◽  
Juan Carlos Illera ◽  
David P. Padilla ◽  
David S. Richardson
Heredity ◽  
2013 ◽  
Vol 112 (3) ◽  
pp. 333-342 ◽  
Author(s):  
A J MacDonald ◽  
N N FitzSimmons ◽  
B Chambers ◽  
M B Renfree ◽  
S D Sarre

2020 ◽  
Vol 40 (8) ◽  
Author(s):  
Fayang Liu ◽  
Hongni Xue ◽  
Jie Ke ◽  
Yongyan Wu ◽  
Kezhen Yao ◽  
...  

ABSTRACT Intracellular pathogen resistance 1 (Ipr1) has been found to be a mediator to integrate cyclic GMP-AMP synthase (cGAS)–interferon regulatory factor 3 (IRF3), activated by intracellular pathogens, with the p53 pathway. Previous studies have shown the process of Ipr1 induction by various immune reactions, including intracellular bacterial and viral infections. The present study demonstrated that Ipr1 is regulated by the cGAS-IRF3 pathway during pathogenic infection. IRF3 was found to regulate Ipr1 expression by directly binding the interferon-stimulated response element motif of the Ipr1 promoter. Knockdown of Ipr1 decreased the expression of immunity-related GTPase family M member 1 (Irgm1), which plays critical roles in autophagy initiation. Irgm1 promoter characterization revealed a p53 motif in front of the transcription start site. P53 was found to participate in regulation of Irgm1 expression and IPR1-related effects on P53 stability by affecting interactions between ribosomal protein L11 (RPL11) and transformed mouse 3T3 cell double minute 2 (MDM2). Our results indicate that Ipr1 integrates cGAS-IRF3 with p53-modulated Irgm1 expression.


2021 ◽  
Vol 49 (6) ◽  
pp. 030006052110253
Author(s):  
Zi Wang ◽  
Zhiying Li ◽  
Suping Luo ◽  
Zhikai Yang ◽  
Ying Xing ◽  
...  

Eosinophilic peritonitis (EP) is a well-described complication of peritoneal dialysis that occurs because of an overreaction to constituents that are related to the catheter or tubing, peritoneal dialysate, pathogenic infection, or intraperitoneal drug use. EP caused by antibiotic use is rare. We present the case of a patient with cefoperazone and sulbactam-related EP. A 59-year-old woman who was undergoing peritoneal dialysis presented with peritonitis with abdominal pain and turbid peritoneal dialysis. Empiric intraperitoneal cefazolin in combination with cefoperazone and sulbactam was started after peritoneal dialysis effluent cultures were performed. Her peritonitis achieved remission in 2 days with the help of cephalosporin, but she developed EP 1 week later, when her dialysate eosinophil count peaked at 49% of the total dialysate white blood cells (absolute count, 110/mm3). We excluded other possible causes and speculated that cefoperazone and sulbactam was the probable cause of EP. The patient continued treatment with cefoperazone and sulbactam for 14 days. EP resolved within 48 hours after stopping cefoperazone and sulbactam. Thus, EP can be caused by cefoperazone and sulbactam use. Physicians should be able to distinguish antibiotic-related EP from refractory peritonitis to avoid technique failure.


Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 525
Author(s):  
Poonnawat Panjad ◽  
Rujipas Yongsawas ◽  
Chainarong Sinpoo ◽  
Chonthicha Pakwan ◽  
Phakamas Subta ◽  
...  

Honeybees, Apis mellifera, are important pollinators of many economically important crops. However, one of the reasons for their decline is pathogenic infection. Nosema disease and American foulbrood (AFB) disease are the most common bee pathogens that propagate in the gut of honeybees. This study investigated the impact of gut-propagating pathogens, including Nosema ceranae and Paenibacillus larvae, on bacterial communities in the gut of A. mellifera using 454-pyrosequencing. Pyrosequencing results showed that N. ceranae was implicated in the elimination of Serratia and the dramatic increase in Snodgrassella and Bartonella in adult bees’ guts, while bacterial communities of P. larvae-infected larvae were not affected by the infection. The results indicated that only N. ceranae had an impact on some core bacteria in the gut of A. mellifera through increasing core gut bacteria, therefore leading to the induction of dysbiosis in the bees’ gut.


2016 ◽  
Vol 43 (1) ◽  
pp. 61 ◽  
Author(s):  
Clifford Bennison ◽  
J. Anthony Friend ◽  
Timothy Button ◽  
Harriet Mills ◽  
Cathy Lambert ◽  
...  

Context House mice (Mus domesticus) are present on Boullanger and Whitlock islands, Western Australia, and could potentially threaten populations of the dibbler (Parantechinus apicalis) and grey-bellied dunnart (Sminthopsis griseoventer) through competition for resources. A workshop in 2007 recommended a study to assess the feasibility of eradicating house mice from the islands by using poison baits and of the risk posed to non-target native species. Aim We aimed to assess the risk to non-target native species if poison baiting was used to eradicate house mice on Boullanger and Whitlock islands. Methods Non-toxic baits containing the bait marker rhodamine B were distributed on Boullanger Island and on the mouse free Escape Island to determine the potential for primary poisoning. Acceptance of baits by mammals was measured through sampling and analysis of whiskers, and by reptiles through observations of dye in faeces. To determine the potential for secondary exposure to poison, the response of dibblers to mouse carcasses was observed using motion-activated cameras. Bait acceptance was compared using two methods of delivery, namely, scattering in the open and delivery in polyvinyl chloride (PVC) tubes. A cafeteria experiment of bait consumption by dibblers was also undertaken using captive animals held at the Perth Zoo. Ten dibblers were offered non-toxic baits containing rhodamine B in addition to their normal meals; consumption of bait and the presence of dye in whiskers were measured. Key results Bait acceptance on the islands was high for house mice (92% of individuals) and dibblers (48%) and it was independent of bait-delivery technique. There was no evidence of bait acceptance by grey-bellied dunnarts. Dibblers may consume mice carcasses if available; however, no direct consumption of mice carcasses was observed with movement sensor cameras but one dibbler was observed removing a mouse carcass and taking it away. During the cafeteria experiment, 9 of 10 captive dibblers consumed baits. Conclusions This investigation demonstrated that dibblers consume baits readily and island populations would experience high mortality if exposed to poison baits. Poison baiting could effectively eradicate mice from Boullanger and Whitlock islands but not without mortality for dibblers. Implications Toxic baits could be used to eradicate mice from Boullanger and Whitlock islands, provided that non-target species such as dibblers were temporarily removed from the islands before the application of baits.


2009 ◽  
Vol 59 (2) ◽  
pp. 169-187 ◽  
Author(s):  
Michal Kozakiewicz ◽  
Alicja Gryczyńska–Siemiątkowska ◽  
Hanna Panagiotopoulou ◽  
Anna Kozakiewicz ◽  
Robert Rutkowski ◽  
...  

AbstractHabitat barriers are considered to be an important factor causing the local reduction of genetic diversity by dividing a population into smaller sections and preventing gene flow between them. However, the “barrier effect” might be different in the case of different species. The effect of geographic distance and water barriers on the genetic structure of populations of two common rodent species – the yellow-necked mouse (Apodemus flavicollis) and the bank vole (Myodes glareolus) living in the area of a lake (on its islands and on two opposite shores) was investigated with the use of microsatellite fragment analysis. The two studied species are characterised by similar habitat requirements, but differ with regard to the socio-spatial structure of the population, individual mobility, capability to cross environmental barriers, and other factors. Trapping was performed for two years in spring and autumn in north-eastern Poland (21°E, 53°N). A total of 160 yellow-necked mouse individuals (7 microsatellite loci) and 346 bank vole individuals (9 microsatellite loci) were analysed. The results of the differentiation analyses (FST and RST) have shown that both the barrier which is formed by a ca. 300 m wide belt of water (between the island and the mainland) and the actual distance of approximately 10 km in continuous populations are sufficient to create genetic differentiation within both species. The differences between local populations living on opposite lake shores are the smallest; differences between any one of them and the island populations are more distinct. All of the genetic diversity indices (the mean number of alleles, mean allelic richness, as well as the observed and expected heterozygosity) of the local populations from the lakeshores were significantly higher than of the small island populations of these two species separated by the water barrier. The more profound “isolation effect” in the case of the island populations of the bank vole, in comparison to the yellow-necked mouse populations, seems to result not only from the lower mobility of the bank vole species, but may also be attributed to other differences in the animals' behaviour.


The Auk ◽  
2021 ◽  
Author(s):  
Therese A Catanach ◽  
Matthew R Halley ◽  
Julie M Allen ◽  
Jeff A Johnson ◽  
Russell Thorstrom ◽  
...  

Abstract More than one-third of the bird species found in the Caribbean are endemic to a set of neighboring islands or a single island. However, we have little knowledge of the evolutionary history of the Caribbean avifauna, and the lack of phylogenetic studies limits our understanding of the extent of endemism in the region. The Sharp-shinned Hawk (Accipiter striatus) occurs widely across the Americas and includes 3 endemic Caribbean taxa: venator on Puerto Rico, striatus on Hispaniola, and fringilloides on Cuba. These island populations have undergone extreme declines presumably due to ecosystem changes caused by anthropogenic factors, as well as due to severe hurricanes. Sharp-shinned Hawks, in general, and Caribbean Sharp-shinned Hawks, in particular, have not been placed in a modern phylogenetic context. However, the island taxa have historically been presumed to have some ongoing gene flow with mainland populations. Here we sequenced ultraconserved elements (UCEs) and their flanking regions from 38 samples, focusing on Caribbean taxa. Using a combination of UCEs, mitochondrial genome sequences, and single-nucleotide polymorphisms, we investigated the phylogenetic relationships among Caribbean lineages and their relationships to mainland taxa. We found that Caribbean Sharp-shinned Hawks are reciprocally monophyletic in all datasets with regard to mainland populations and among island taxa (with no shared mtDNA haplotypes) and that divergence in the NADH dehydrogenase 2 gene (ND2) between these mainland and island groups averaged 1.83%. Furthermore, sparse non-negative matrix factorization (sNMF) analysis indicated that Hispaniola, Puerto Rico, and mainland samples each form separate populations with limited admixture. We argue that our findings are consistent with the recognition of the 3 resident Caribbean populations as species-level taxa because nuclear and mitochondrial genetic data indicate reciprocal monophyly and have species-level divergences, there is no sharing of mitochondrial haplotypes among or between island taxa and those on the mainland; and they are diagnosable by plumage.


Sign in / Sign up

Export Citation Format

Share Document