Analysis of adaptation to high ethanol concentration in Saccharomyces cerevisiae using DNA microarray

2009 ◽  
Vol 32 (5) ◽  
pp. 681-688 ◽  
Author(s):  
Thai Nho Dinh ◽  
Keisuke Nagahisa ◽  
Katsunori Yoshikawa ◽  
Takashi Hirasawa ◽  
Chikara Furusawa ◽  
...  
2010 ◽  
Vol 31 (2) ◽  
pp. 86
Author(s):  
Jennifer Bellon

When we think of Saccharomyces cerevisiae, fermentation immediately comes to mind, but this is not the only trait that makes this yeast the organism of choice for bread, beer and wine production. The winemaking industry, for example, requires robust strains, capable of converting sugar to ethanol in challenging conditions; high osmotic stress and low pH in the initial grape must, followed by high ethanol concentration at the later stages of fermentation. Winemakers also look for ways of using fermentation to introduce aroma and flavour diversity to their wines as a means of improving style and for product differentiation. Choice of wine yeast from the plethora of strains available to winemakers is one way of achieving this, particularly with the new breed of interspecific hybrid yeast strains currently being generated.


PLoS ONE ◽  
2008 ◽  
Vol 3 (7) ◽  
pp. e2623 ◽  
Author(s):  
Thai Nho Dinh ◽  
Keisuke Nagahisa ◽  
Takashi Hirasawa ◽  
Chikara Furusawa ◽  
Hiroshi Shimizu

2006 ◽  
Vol 40 (9) ◽  
pp. 1773-1782 ◽  
Author(s):  
Hyun-Ju Kim ◽  
Randeep Rakwal ◽  
Junko Shibato ◽  
Hitoshi Iwahashi ◽  
Jang-Seoung Choi ◽  
...  

2019 ◽  
Vol 57 (1) ◽  
pp. 5-16 ◽  
Author(s):  
Anamarija Štafa ◽  
Andrea Pranklin ◽  
Ivan Krešimir Svetec ◽  
Božidar Šantek ◽  
Marina Svetec Miklenić ◽  
...  

Bioethanol production from lignocellulosic hydrolysates requires a producer strain that tolerates both the presence of growth and fermentation inhibitors and high ethanol concentrations. Therefore, we constructed heterozygous intraspecies hybrid diploids of Saccharomyces cerevisiae by crossing two natural S. cerevisiae isolates, YIIc17_E5 and UWOPS87-2421, a good ethanol producer found in wine and a strain from the flower of the cactus Opuntia megacantha resistant to inhibitors found in lignocellulosic hydrolysates, respectively. Hybrids grew faster than parental strains in the absence and in the presence of acetic and levulinic acids and 2-furaldehyde, inhibitors frequently found in lignocellulosic hydrolysates, and the overexpression of YAP1 gene increased their survival. Furthermore, although originating from the same parental strains, hybrids displayed different fermentative potential in a CO2 production test, suggesting genetic variability that could be used for further selection of desirable traits. Therefore, our results suggest that the construction of intraspecies hybrids coupled with the use of genetic engineering techniques is a promising approach for improvement or development of new biotechnologically relevant strains of S. cerevisiae. Moreover, it was found that the success of gene targeting (gene targeting fidelity) in natural S. cerevisiae isolates (YIIc17_E5α and UWOPS87-2421α) was strikingly lower than in laboratory strains and the most frequent off-targeting event was targeted chromosome duplication.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Ping Wan ◽  
Dongmei Zhai ◽  
Zhen Wang ◽  
Xiushan Yang ◽  
Shen Tian

Saccharomyces cerevisiae Y5 (CGMCC no. 2660) and Issatchenkia orientalis Y4 (CGMCC no. 2159) were combined individually with Pichia stipitis CBS6054 to establish the cocultures of Y5 + CBS6054 and Y4 + CBS6054. The coculture Y5 + CBS6054 effectively metabolized furfural and HMF and converted xylose and glucose mixture to ethanol with ethanol concentration of 16.6 g/L and ethanol yield of 0.46 g ethanol/g sugar, corresponding to 91.2% of the maximal theoretical value in synthetic medium. Accordingly, the nondetoxified dilute-acid hydrolysate was used to produce ethanol by co-culture Y5 + CBS6054. The co-culture consumed glucose along with furfural and HMF completely in 12 h, and all xylose within 96 h, resulting in a final ethanol concentration of 27.4 g/L and ethanol yield of 0.43 g ethanol/g sugar, corresponding to 85.1% of the maximal theoretical value. The results indicated that the co-culture of Y5 + CBS6054 was a satisfying combination for ethanol production from non-detoxified dilute-acid lignocellulosic hydrolysates. This co-culture showed a promising prospect for industrial application.


2016 ◽  
Vol 30 (1-2) ◽  
pp. 49-54 ◽  
Author(s):  
Shafkat Shamim Rahman ◽  
Md Mahboob Hossain ◽  
Naiyyum Choudhury

Two ethanol fermenting Saccharomyces cerevisiae were isolated from date juice and grapes and grown in YEPD medium. They were characterized for alcoholic fermentation using sugarcane molasses and their growth conditions were optimized with respect to pH and sugar concentration. Results revealed a temperature of 30ºC, pH 6.0 and 6.5% sugar concentration as optimum for fermentation. Stress tolerance tests showed that date juice isolate was highly tolerant to temperature, pH and high ethanol concentration in the medium. Under optimized conditions, S. cerevisiae isolated from date-juice produced 7.75% of ethanol in molasses as estimated by Conway method.Bangladesh J Microbiol, Volume 30, Number 1-2,June-Dec 2013, pp 49-54


2012 ◽  
Vol 78 (17) ◽  
pp. 6302-6308 ◽  
Author(s):  
Tiago Viana ◽  
Maria C. Loureiro-Dias ◽  
Virgílio Loureiro ◽  
Catarina Prista

ABSTRACTIntracellular pH (pHin) is a tightly regulated physiological parameter, which controls cell performance in all living systems. The purpose of this work was to evaluate if and how H+homeostasis is accomplished by an industrial wine strain ofSaccharomyces cerevisiaewhile fermenting real must under the harsh winery conditions prevalent in the late stages of the fermentation process, in particular low pH and high ethanol concentrations and temperature. Cells grown at 15, 25, and 30°C were harvested in exponential and early and late stationary phases. Intracellular pH remained in the range of 6.0 to 6.4, decreasing significantly only by the end of glucose fermentation, in particular at lower temperatures (pHin5.2 at 15°C), although the cells remained viable and metabolically active. The cell capability of extruding H+via H+-ATPase and of keeping H+out by means of an impermeable membrane were evaluated as potential mechanisms of H+homeostasis. At 30°C, H+efflux was higher in all stages. The most striking observation was that cells in late stationary phase became almost impermeable to H+. Even when these cells were challenged with high ethanol concentrations (up to 20%) added in the assay, their permeability to H+remained very low, being almost undetectable at 15°C. Comparatively, ethanol significantly increased the H+permeability of cells in exponential phase. Understanding the molecular and physiological events underlying yeast H+homeostasis at late stages of fermentations may contribute to the development of more robust strains suitable to efficiently produce a high-quality wine.


Sign in / Sign up

Export Citation Format

Share Document