scholarly journals A Sharp Threshold Phenomenon in String Graphs

Author(s):  
István Tomon

AbstractA string graph is the intersection graph of curves in the plane. We prove that for every $$\epsilon >0$$ ϵ > 0 , if G is a string graph with n vertices such that the edge density of G is below $${1}/{4}-\epsilon $$ 1 / 4 - ϵ , then V(G) contains two linear sized subsets A and B with no edges between them. The constant 1/4 is a sharp threshold for this phenomenon as there are string graphs with edge density less than $${1}/{4}+\epsilon $$ 1 / 4 + ϵ such that there is an edge connecting any two logarithmic sized subsets of the vertices. The existence of linear sized sets A and B with no edges between them in sufficiently sparse string graphs is a direct consequence of a recent result of Lee about separators. Our main theorem finds the largest possible density for which this still holds. In the special case when the curves are x-monotone, the same result was proved by Pach and the author of this paper, who also proposed the conjecture for the general case.

2009 ◽  
Vol 19 (3) ◽  
pp. 371-390 ◽  
Author(s):  
JACOB FOX ◽  
JÁNOS PACH

A string graph is the intersection graph of a collection of continuous arcs in the plane. We show that any string graph with m edges can be separated into two parts of roughly equal size by the removal of $O(m^{3/4}\sqrt{\log m})$ vertices. This result is then used to deduce that every string graph with n vertices and no complete bipartite subgraph Kt,t has at most ctn edges, where ct is a constant depending only on t. Another application shows that locally tree-like string graphs are globally tree-like: for any ε > 0, there is an integer g(ε) such that every string graph with n vertices and girth at least g(ε) has at most (1 + ε)n edges. Furthermore, the number of such labelled graphs is at most (1 + ε)nT(n), where T(n) = nn−2 is the number of labelled trees on n vertices.


2013 ◽  
Vol 23 (1) ◽  
pp. 66-74 ◽  
Author(s):  
JACOB FOX ◽  
JÁNOS PACH

An intersection graph of curves in the plane is called astring graph. Matoušek almost completely settled a conjecture of the authors by showing that every string graph withmedges admits a vertex separator of size$O(\sqrt{m}\log m)$. In the present note, this bound is combined with a result of the authors, according to which every dense string graph contains a large complete balanced bipartite graph. Three applications are given concerning string graphsGwithnvertices: (i) ifKt⊈Gfor somet, then the chromatic number ofGis at most (logn)O(logt); (ii) ifKt,t⊈G, thenGhas at mostt(logt)O(1)nedges,; and (iii) a lopsided Ramsey-type result, which shows that the Erdős–Hajnal conjecture almost holds for string graphs.


2013 ◽  
Vol 23 (1) ◽  
pp. 135-139 ◽  
Author(s):  
JIŘÍ MATOUŠEK

Let G be a string graph (an intersection graph of continuous arcs in the plane) with m edges. Fox and Pach proved that G has a separator consisting of $O(m^{3/4}\sqrt{\log m})$ vertices, and they conjectured that the bound of $O(\sqrt m)$ actually holds. We obtain separators with $O(\sqrt m \,\log m)$ vertices.


2009 ◽  
Vol 16 (4) ◽  
pp. 693-704
Author(s):  
Harun Karsli ◽  
Paulina Pych-Taberska

Abstract We consider the Bézier variant of Chlodovsky–Durrmeyer operators 𝐷𝑛,α for functions 𝑓 measurable and locally bounded on the interval [0,∞). By using the Chanturia modulus of variation we estimate the rate of pointwise convergence of (𝐷𝑛,α 𝑓) (𝑥) at those 𝑥 > 0 at which the one-sided limits 𝑓(𝑥+), 𝑓(𝑥–) exist. In the special case α = 1 the recent result of [Ibikli, Karsli, J. Inequal. Pure Appl. Math. 6: 12, 2005] concerning the Chlodovsky–Durrmeyer operators 𝐷𝑛 is essentially improved and extended to more general classes of functions.


1977 ◽  
Vol 83 (4) ◽  
pp. 751-773 ◽  
Author(s):  
M. Kurosaka

In this paper we examine how the unsteady flow field radiated from an oscillating body is altered from the result of acoustic theory as the direct consequence of disturbances propagating through the non-uniform flow produced by the presence of the body. Taking the specific example of an oscillating airfoil placed in supersonic flow and having the contour of a parabolic arc, we derive a closed-form representation for the unsteady flow field in terms of the confluent hypergeometric function. The analytical expression reveals explicitly that, though the body shape has a negligible effect in the near field, it inextricably affects the unsteady flow at a large distance, both in its amplitude and phase, and substantially modifies the results of acoustic theory. In addition, we display the relation of this solution to the ‘fundamental solution’ and the other salient physical features connected with disturbances propagating through non-uniform flow. The present results recover Whitham's rule in the limit of zero frequency of oscillation and also include, as another special case, the unsteady solution for a wedge obtained by Carrier and Van Dyke.


2018 ◽  
Vol 2020 (6) ◽  
pp. 1748-1793 ◽  
Author(s):  
Oliver Braunling

Abstract We generalize a recent result of Clausen; for a number field with integers $\mathcal{O}$, we compute the K-theory of locally compact $\mathcal{O}$-modules. For the rational integers this recovers Clausen’s result as a special case. Our method of proof is quite different; instead of a homotopy coherent cone construction in $\infty$-categories, we rely on calculus of fraction type results in the style of Schlichting. This produces concrete exact category models for certain quotients, a fact that might be of independent interest. As in Clausen’s work, our computation works for all localizing invariants, not just K-theory.


10.37236/5840 ◽  
2016 ◽  
Vol 23 (4) ◽  
Author(s):  
Micha Sharir ◽  
Adam Sheffer ◽  
Noam Solomon

We prove that the number of incidences between $m$ points and $n$ bounded-degree curves with $k$ degrees of freedom in ${\mathbb R}^d$ is\[ O\left(m^{\frac{k}{dk-d+1}+\varepsilon}n^{\frac{dk-d}{dk-d+1}}+ \sum_{j=2}^{d-1} m^{\frac{k}{jk-j+1}+\varepsilon}n^{\frac{d(j-1)(k-1)}{(d-1)(jk-j+1)}} q_j^{\frac{(d-j)(k-1)}{(d-1)(jk-j+1)}}+m+n\right),\]for any $\varepsilon>0$, where the constant of proportionality depends on $k, \varepsilon$ and $d$, provided that no $j$-dimensional surface of degree $\le c_j(k,d,\varepsilon)$, a constant parameter depending on $k$, $d$, $j$, and $\varepsilon$, contains more than $q_j$ input curves, and that the $q_j$'s satisfy certain mild conditions. This bound generalizes the well-known planar incidence bound of Pach and Sharir to $\mathbb{R}^d$. It generalizes a recent result of Sharir and Solomon concerning point-line incidences in four dimensions (where d=4 and k=2), and partly generalizes a recent result of Guth (as well as the earlier bound of Guth and Katz) in three dimensions (Guth's three-dimensional bound has a better dependency on $q_2$). It also improves a recent d-dimensional general incidence bound by Fox, Pach, Sheffer, Suk, and Zahl, in the special case of incidences with algebraic curves. Our results are also related to recent works by Dvir and Gopi and by Hablicsek and Scherr concerning rich lines in high-dimensional spaces. Our bound is not known to be tight in most cases.


2008 ◽  
Vol 7 (4) ◽  
pp. 895-899 ◽  
Author(s):  
Anand Pillay

AbstractWe prove that if M0 is a model of a simple theory, and p(x) is a complete type of Cantor–Bendixon rank 1 over M0, then p is stationary and regular. As a consequence we obtain another proof that any countable model M0 of a countable complete simple theory T has infinitely many countable elementary extensions up to M0-isomorphism. The latter extends earlier results of the author in the stable case, and is a special case of a recent result of Tanovic.


1971 ◽  
Vol 14 (3) ◽  
pp. 315-319
Author(s):  
D. Ž. Djoković

AbstractLet A be a finite dimensional commutative and associative algebra with identity, over a field K. We assume also that A is generated by one element and consequently, isomorphic to a quotient algebra of the polynomial algebra K[X]. If A=K[a] and bi=fi(A), fi(X) ∊ K[X], 1≤i≤r we find necessary and sufficient conditions which should be satisfied by fi(X) in order that A = K[b1, …, br].The result can be stated as a theorem about matrices. As a special case we obtain a recent result of Thompson [4].In fact this last result was established earlier by Mirsky and Rado [3]. I am grateful to the referee for supplying this reference.


2019 ◽  
Vol 169 (1) ◽  
pp. 209-223
Author(s):  
JACOB FOX ◽  
ASHWIN SAH ◽  
MEHTAAB SAWHNEY ◽  
DAVID STONER ◽  
YUFEI ZHAO

AbstractMay the triforce be the 3-uniform hypergraph on six vertices with edges {123′, 12′3, 1′23}. We show that the minimum triforce density in a 3-uniform hypergraph of edge density δ is δ4–o(1) but not O(δ4).Let M(δ) be the maximum number such that the following holds: for every ∊ > 0 and $G = {\mathbb{F}}_2^n$ with n sufficiently large, if A ⊆ G × G with A ≥ δ|G|2, then there exists a nonzero “popular difference” d ∈ G such that the number of “corners” (x, y), (x + d, y), (x, y + d) ∈ A is at least (M(δ)–∊)|G|2. As a corollary via a recent result of Mandache, we conclude that M(δ) = δ4–o(1) and M(δ) = ω(δ4).On the other hand, for 0 < δ < 1/2 and sufficiently large N, there exists A ⊆ [N]3 with |A| ≥ δN3 such that for every d ≠ 0, the number of corners (x, y, z), (x + d, y, z), (x, y + d, z), (x, y, z + d) ∈ A is at most δc log(1/δ)N3. A similar bound holds in higher dimensions, or for any configuration with at least 5 points or affine dimension at least 3.


Sign in / Sign up

Export Citation Format

Share Document