Optimization of ultrasound and microwave-assisted extraction of sweet cherry tree branches and chemical component analysis by UPLC–MS/MS

Trees ◽  
2021 ◽  
Author(s):  
Huimin Zhang ◽  
Hongguang Yan ◽  
Cuixiang Lu ◽  
Hui Lin ◽  
Quan Li
2010 ◽  
Vol 30 (5) ◽  
pp. 567-568
Author(s):  
Xiao-li LI ◽  
Ming-yuan ZHANG ◽  
Wei-quan ZHAO ◽  
Man Li ◽  
Hai-ying TENG ◽  
...  

2015 ◽  
Vol 11 (3) ◽  
pp. 142-145 ◽  
Author(s):  
Simone Carradori ◽  
Luisa Mannina ◽  
Federica De Cosmi ◽  
Tamara Beccarini ◽  
Daniela Secci ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 430
Author(s):  
Hassan Hadi Mehdi Al Rubaiy ◽  
Ammar Altemimi ◽  
Ali Khudair Jaber Al Rikabi ◽  
Naoufal Lakhssassi ◽  
Anubhav Pratap-Singh

The present study proposes microwave-assisted extraction as a sustainable technique for the biosynthesis of bioactive compounds from rice fermented with Aspergillus flavus (koji). First, fermentation conditions (i.e., pH from 3–12, five temperatures from 20–40 °C, and four culture-fermentation media viz. wheat, wheat bran, malt and rice) were optimized for producing microbial bioactive compounds. Microwave extraction was performed at 2450 MHz and 500 W for 20, 30, and 40 s with seven solvents (distilled water, ethyl acetate, hexane, ethanol, chloroform, diethyl ether, and methanol). The obtained results revealed that ethyl acetate is the most appropriate solvent for extraction. Effects of this ethyl acetate extract were compared with a commercial synthetic antioxidant. Antioxidant properties were enhanced by preventing the oxidation of the linoleic acid (C18H32O2) with an inhibition rate (antioxidant efficacy) of 73.13%. Notably, the ferrous ion binding ability was marginally lower when compared to the disodium salt of ethylenediaminetetraacetic acid (EDTA). Additionally, the obtained total content of phenolic compounds in the ethyl acetate extract of fermented rice (koji) by Aspergillus flavus was 232.11 mg based on gallic acid/mL. Antioxidant compounds in the ethyl acetate extract of fermented rice showed stability under neutral conditions, as well as at high temperatures reaching 185 °C during 2 h, but were unstable under acidic and alkaline conditions. The results demonstrate the efficacy of novel microwave-assisted extraction technique for accelerating antioxidant production during rice fermentation.


Sign in / Sign up

Export Citation Format

Share Document