Spatio-temporal characteristics of extreme precipitation events during 1951–2011 in Shandong, China and possible connection to the large scale atmospheric circulation

2015 ◽  
Vol 30 (5) ◽  
pp. 1421-1440 ◽  
Author(s):  
Tao Gao ◽  
Xiaohui Shi
2010 ◽  
Vol 10 (5) ◽  
pp. 1037-1050 ◽  
Author(s):  
A. Toreti ◽  
E. Xoplaki ◽  
D. Maraun ◽  
F. G. Kuglitsch ◽  
H. Wanner ◽  
...  

Abstract. We present an analysis of daily extreme precipitation events for the extended winter season (October–March) at 20 Mediterranean coastal sites covering the period 1950–2006. The heavy tailed behaviour of precipitation extremes and estimated return levels, including associated uncertainties, are derived applying a procedure based on the Generalized Pareto Distribution, in combination with recently developed methods. Precipitation extremes have an important contribution to make seasonal totals (approximately 60% for all series). Three stations (one in the western Mediterranean and the others in the eastern basin) have a 5-year return level above 100 mm, while the lowest value (estimated for two Italian series) is equal to 58 mm. As for the 50-year return level, an Italian station (Genoa) has the highest value of 264 mm, while the other values range from 82 to 200 mm. Furthermore, six series (from stations located in France, Italy, Greece, and Cyprus) show a significant negative tendency in the probability of observing an extreme event. The relationship between extreme precipitation events and the large scale atmospheric circulation at the upper, mid and low troposphere is investigated by using NCEP/NCAR reanalysis data. A 2-step classification procedure identifies three significant anomaly patterns both for the western-central and eastern part of the Mediterranean basin. In the western Mediterranean, the anomalous southwesterly surface to mid-tropospheric flow is connected with enhanced moisture transport from the Atlantic. During ≥5-year return level events, the subtropical jet stream axis is aligned with the African coastline and interacts with the eddy-driven jet stream. This is connected with enhanced large scale ascending motions, instability and leads to the development of severe precipitation events. For the eastern Mediterranean extreme precipitation events, the identified anomaly patterns suggest warm air advection connected with anomalous ascent motions and an increase of the low- to mid-tropospheric moisture. Furthermore, the jet stream position (during ≥5-year return level events) supports the eastern basin being in a divergence area, where ascent motions are favoured. Our results contribute to an improved understanding of daily precipitation extremes in the cold season and associated large scale atmospheric features.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 218
Author(s):  
Changjun Wan ◽  
Changxiu Cheng ◽  
Sijing Ye ◽  
Shi Shen ◽  
Ting Zhang

Precipitation is an essential climate variable in the hydrologic cycle. Its abnormal change would have a serious impact on the social economy, ecological development and life safety. In recent decades, many studies about extreme precipitation have been performed on spatio-temporal variation patterns under global changes; little research has been conducted on the regionality and persistence, which tend to be more destructive. This study defines extreme precipitation events by percentile method, then applies the spatio-temporal scanning model (STSM) and the local spatial autocorrelation model (LSAM) to explore the spatio-temporal aggregation characteristics of extreme precipitation, taking China in July as a case. The study result showed that the STSM with the LSAM can effectively detect the spatio-temporal accumulation areas. The extreme precipitation events of China in July 2016 have a significant spatio-temporal aggregation characteristic. From the spatial perspective, China’s summer extreme precipitation spatio-temporal clusters are mainly distributed in eastern China and northern China, such as Dongting Lake plain, the Circum-Bohai Sea region, Gansu, and Xinjiang. From the temporal perspective, the spatio-temporal clusters of extreme precipitation are mainly distributed in July, and its occurrence was delayed with an increase in latitude, except for in Xinjiang, where extreme precipitation events often take place earlier and persist longer.


2021 ◽  
Author(s):  
Jérôme Kopp ◽  
Pauline Rivoire ◽  
S. Mubashshir Ali ◽  
Yannick Barton ◽  
Olivia Martius

<p>Temporal clustering of extreme precipitation events on subseasonal time scales is a type of compound event, which can cause large precipitation accumulations and lead to floods. We present a novel count-based procedure to identify subseasonal clustering of extreme precipitation events. Furthermore, we introduce two metrics to characterise the frequency of subseasonal clustering episodes and their relevance for large precipitation accumulations. The advantage of this approach is that it does not require the investigated variable (here precipitation) to satisfy any specific statistical properties. Applying this methodology to the ERA5 reanalysis data set, we identify regions where subseasonal clustering of annual high precipitation percentiles occurs frequently and contributes substantially to large precipitation accumulations. Those regions are the east and northeast of the Asian continent (north of Yellow Sea, in the Chinese provinces of Hebei, Jilin and Liaoning; North and South Korea; Siberia and east of Mongolia), central Canada and south of California, Afghanistan, Pakistan, the southeast of the Iberian Peninsula, and the north of Argentina and south of Bolivia. Our method is robust with respect to the parameters used to define the extreme events (the percentile threshold and the run length) and the length of the subseasonal time window (here 2 – 4 weeks). The procedure could also be used to identify temporal clustering of other variables (e.g. heat waves) and can be applied on different time scales (e.g. for drought years). <span>For a complementary study on the subseasonal clustering of European extreme precipitation events and its relationship to large-scale atmospheric drivers, please refer to Barton et al.</span></p>


2019 ◽  
Vol 147 (4) ◽  
pp. 1415-1428 ◽  
Author(s):  
Imme Benedict ◽  
Karianne Ødemark ◽  
Thomas Nipen ◽  
Richard Moore

Abstract A climatology of extreme cold season precipitation events in Norway from 1979 to 2014 is presented, based on the 99th percentile of the 24-h accumulated precipitation. Three regions, termed north, west, and south are identified, each exhibiting a unique seasonal distribution. There is a proclivity for events to occur during the positive phase of the NAO. The result is statistically significant at the 95th percentile for the north and west regions. An overarching hypothesis of this work is that anomalous moisture flux, or so-called atmospheric rivers (ARs), are integral to extreme precipitation events during the Norwegian cold season. An objective analysis of the integrated vapor transport illustrates that more than 85% of the events are associated with ARs. An empirical orthogonal function and fuzzy cluster technique is used to identify the large-scale weather patterns conducive to the moisture flux and extreme precipitation. Five days before the event and for each of the three regions, two patterns are found. The first represents an intense, southward-shifted jet with a southwest–northeast orientation. The second identifies a weak, northward-shifted, zonal jet. As the event approaches, regional differences become more apparent. The distinctive flow pattern conducive to orographically enhanced precipitation emerges in the two clusters for each region. For the north and west regions, this entails primarily zonal flow impinging upon the south–north-orientated topography, the difference being the latitude of the strong flow. In contrast, the south region exhibits a significant southerly component to the flow.


2018 ◽  
Vol 31 (6) ◽  
pp. 2115-2131 ◽  
Author(s):  
Steven C. Chan ◽  
Elizabeth J. Kendon ◽  
Nigel Roberts ◽  
Stephen Blenkinsop ◽  
Hayley J. Fowler

Midlatitude extreme precipitation events are caused by well-understood meteorological drivers, such as vertical instability and low pressure systems. In principle, dynamical weather and climate models behave in the same way, although perhaps with the sensitivities to the drivers varying between models. Unlike parameterized convection models (PCMs), convection-permitting models (CPMs) are able to realistically capture subdaily extreme precipitation. CPMs are computationally expensive; being able to diagnose the occurrence of subdaily extreme precipitation from large-scale drivers, with sufficient skill, would allow effective targeting of CPM downscaling simulations. Here the regression relationships are quantified between the occurrence of extreme hourly precipitation events and vertical stability and circulation predictors in southern United Kingdom 1.5-km CPM and 12-km PCM present- and future-climate simulations. Overall, the large-scale predictors demonstrate skill in predicting the occurrence of extreme hourly events in both the 1.5- and 12-km simulations. For the present-climate simulations, extreme occurrences in the 12-km model are less sensitive to vertical stability than in the 1.5-km model, consistent with understanding the limitations of cumulus parameterization. In the future-climate simulations, the regression relationship is more similar between the two models, which may be understood from changes to the large-scale circulation patterns and land surface climate. Overall, regression analysis offers a promising avenue for targeting CPM simulations. The authors also outline which events would be missed by adopting such a targeted approach.


2017 ◽  
Vol 30 (4) ◽  
pp. 1307-1326 ◽  
Author(s):  
Siyu Zhao ◽  
Yi Deng ◽  
Robert X. Black

Abstract Regional patterns of extreme precipitation events occurring over the continental United States are identified via hierarchical cluster analysis of observed daily precipitation for the period 1950–2005. Six canonical extreme precipitation patterns (EPPs) are isolated for the boreal warm season and five for the cool season. The large-scale meteorological pattern (LMP) inducing each EPP is identified and used to create a “base function” for evaluating a climate model’s potential for accurately representing the different patterns of precipitation extremes. A parallel analysis of the Community Climate System Model, version 4 (CCSM4), reveals that the CCSM4 successfully captures the main U.S. EPPs for both the warm and cool seasons, albeit with varying degrees of accuracy. The model’s skill in simulating each EPP tends to be positively correlated with its capability in representing the associated LMP. Model bias in the occurrence frequency of a governing LMP is directly related to the frequency bias in the corresponding EPP. In addition, however, discrepancies are found between the CCSM4’s representation of LMPs and EPPs over regions such as the western United States and Midwest, where topographic precipitation influences and organized convection are prominent, respectively. In these cases, the model representation of finer-scale physical processes appears to be at least equally important compared to the LMPs in driving the occurrence of extreme precipitation.


Sign in / Sign up

Export Citation Format

Share Document