A compact uniplanar ACS fed multi band low cost printed antenna for modern 2.4/3.5/5 GHz applications

2017 ◽  
Vol 24 (3) ◽  
pp. 1413-1422 ◽  
Author(s):  
Arvind Kumar ◽  
Praveen Vummadisetty Naidu ◽  
Vinay Kumar
Keyword(s):  
Low Cost ◽  
5 Ghz ◽  
2018 ◽  
Vol 7 (2) ◽  
pp. 68-75 ◽  
Author(s):  
P. N. Vummadisetty ◽  
A. Kumar

This research article presents, a compact 0.19 λ x 0.32 λ size ACS fed printed monopole wideband antenna loaded with multiple radiating branches suitable for LTE2300/WiBro, 5 GHz WLAN and WiMAX applications. The proposed triple band uniplanar antenna encompasses of C shaped strip, L shaped strip, rectangular shaped strip and a lateral ground plane. All the radiating strips and ground plane are etched on the 26 × 15 m size low cost FR4 epoxy substrate. This designed geometry evoked three independent reonances at 2.3 GHz, 3.5 GHz and 5.5 GHz with precise impedance matching over each operating band. The reflection coefficient ( ) response of the presented antenna demonstrates three distinct resonant modes associated with -10 dB bandwidths are about 2.24-2.40 GHz, 3.38-3.83 GHz and 5.0-6.25 GHz respectively. From the study, it is also observed that the proposed design works perfect with microstrip as well as CPW feedings. Hence the designed Multi Feed Multi Band (MFMB) antenna can be easily deployed in to any portable wireless device that works for 2.3/3.5/ 5 GHz frequency bands.


2005 ◽  
Author(s):  
Mikko T. Syrjasuo ◽  
Brian J. Jackel ◽  
Eric F. Donovan ◽  
Trond S. Trondsen ◽  
Mike Greffen
Keyword(s):  
Low Cost ◽  

Author(s):  
Asmaa Zugari ◽  
Wael Abd Ellatif Ali ◽  
Mohammad Ahmad Salamin ◽  
El Mokhtar Hamham

In this paper, a compact reconfigurable tri-band/quad-band monopole antenna is presented. To achieve the multi-band behavior, two right-angled triangles were etched in a conventional rectangular patch, and a partial ground plane is used. Moreover, the proposed multi-band antenna is printed on a low cost FR4 epoxy with compact dimensions of 0.23[Formula: see text], where [Formula: see text] is calculated at the lowest resonance frequency. To provide frequency agility, a metal strip which acts as PIN diode was embedded in the frame of the modified patch. The tri-band/quad-band antenna performance in terms of reflection coefficient, radiation patterns, peak gain and efficiency was studied. The measured results are consistent with the simulated results for both cases. The simple structure and the compact size of the proposed antenna could make it a good candidate for multi-band wireless applications.


Author(s):  
Mohamad Kamal A Rahim ◽  
Huda A. A. Majid ◽  
Mohamad Rijal Hamid

Reconfigurable antennas have attracted a lot of attention especially in future wireless communication systems. Superior features such as reconfigurable capability, low cost, multi-purpose functions and size miniaturization have given reconfigurable antennas advantage to be integrated into a wireless systems. In this chapter, two types of reconfigurable antennas are discussed. First, frequency reconfigurable narrowband microstrip slot antenna (FRSA) is presented. The proposed antenna is designed to operate at six reconfigurable frequency bands from 2 GHz to 5 GHz with bidirectional radiation pattern. The second antenna design is frequency reconfigurable narrowband patch-slot antenna (FRPSA) is presented. The antenna is a combination of a microstrip patch and slot antenna. Nine different narrow bands are produced by tuning the effective length of the slot. The performances of the antenna in term of simulated and measured results are presented. In conclusion, good agreement between the simulated and measured results has been attained.


2005 ◽  
Author(s):  
Pere Marti ◽  
Moises Serra ◽  
Jordi Carrabina

Sign in / Sign up

Export Citation Format

Share Document