scholarly journals Effect of equatorial ionization anomaly on the occurrence of spread-F

1997 ◽  
Vol 15 (2) ◽  
pp. 255-262 ◽  
Author(s):  
P. T. Jayachandran ◽  
P. Sri Ram ◽  
V. V. Somayajulu ◽  
P. V. S. Rama Rao

Abstract. The unique geometry of the geomagnetic field lines over the equatorial ionosphere coupled with the E-W electric field causes the equatorial ionization anomaly (EIA) and equatorial spread-F (ESF). Ionosonde data obtained at a chain of four stations covering equator to anomaly crest region (0.3 to 33 °N dip) in the Indian sector are used to study the role of EIA and the associated processes on the occurrence of ESF. The study period pertains to the equinoctial months (March, April, September and October) of 1991. The ratios of critical frequency of F-layer (ƒ0F2) and electron densities at an altitude of 270 km between Ahmedabad (33 °N dip) and Waltair (20 °N dip) are found to shoot up in the afternoon hours on spread-F days showing strengthening of the EIA in the afternoon hours. The study confirms the earlier conclusions made by Raghava Rao et al. and Alex et al. that a well-developed EIA is one of the conditions conducive for the generation of ESF. This study also shows that the location of the crest is also important in addition to the strength of the anomaly.

2016 ◽  
Vol 34 (1) ◽  
pp. 55-65 ◽  
Author(s):  
A. D. M. Walker ◽  
G. J. Sofko

Abstract. When studying magnetospheric convection, it is often necessary to map the steady-state electric field, measured at some point on a magnetic field line, to a magnetically conjugate point in the other hemisphere, or the equatorial plane, or at the position of a satellite. Such mapping is relatively easy in a dipole field although the appropriate formulae are not easily accessible. They are derived and reviewed here with some examples. It is not possible to derive such formulae in more realistic geomagnetic field models. A new method is described in this paper for accurate mapping of electric fields along field lines, which can be used for any field model in which the magnetic field and its spatial derivatives can be computed. From the spatial derivatives of the magnetic field three first order differential equations are derived for the components of the normalized element of separation of two closely spaced field lines. These can be integrated along with the magnetic field tracing equations and Faraday's law used to obtain the electric field as a function of distance measured along the magnetic field line. The method is tested in a simple model consisting of a dipole field plus a magnetotail model. The method is shown to be accurate, convenient, and suitable for use with more realistic geomagnetic field models.


2014 ◽  
Vol 23 (01n02) ◽  
pp. 1450008
Author(s):  
Isaac Macwan ◽  
Zihe Zhao ◽  
Omar Sobh ◽  
Jinnque Rho ◽  
Ausif Mahmood ◽  
...  

Magnetotactic bacteria (MTB), discovered in early 1970s contain single-domain crystals of magnetite ( Fe 3 O 4) called magnetosomes that tend to form a chain like structure from the proximal to the distal pole along the long axis of the cell. The ability of these bacteria to sense the magnetic field for displacement, also called magnetotaxis, arises from the magnetic dipole moment of this chain of magnetosomes. In aquatic habitats, these organisms sense the geomagnetic field and traverse the oxic-anoxic interface for optimal oxygen concentration along the field lines. Here we report an elegant use of MTB where magnetotaxis of Magnetospirillum magneticum (classified as AMB-1) could be utilized for controlled navigation over a semiconductor substrate for selective deposition. We examined 50mm long coils made out of 18AWG and 20AWG copper conductors having diameters of 5mm, 10mm and 20mm for magnetic field intensity and heat generation. Based on the COMSOL simulations and experimental data, it is recognized that a compound semiconductor manufacturing technology involving bacterial carriers and carbon-based materials such as graphene and carbon nanotubes would be a desirable choice in the future.


2010 ◽  
Vol 28 (2) ◽  
pp. 327-337 ◽  
Author(s):  
J. Krall ◽  
J. D. Huba ◽  
G. Joyce ◽  
T. Yokoyama

Abstract. Forces governing the three-dimensional structure of equatorial spread-F (ESF) plumes are examined using the NRL SAMI3/ESF three-dimensional simulation code. As is the case with the equatorial ionization anomaly (IA), density crests within the plume occur where gravitational and diffusive forces are in balance. Large E×B drifts within the ESF plume place these crests on field lines with apex heights higher than those of the background IA crests. Large poleward field-aligned ion velocities within the plume result in large ion-neutral diffusive forces that support these ionization crests at altitudes higher than background IA crest altitudes. We show examples in which density enhancements associated with ESF, also called "plasma blobs," can occur within an ESF plume on density-crest field lines, at or above the density crests. Simulated ESF density enhancements reproduce all key features of those that have been observed in situ.


2005 ◽  
Vol 23 (3) ◽  
pp. 753-757 ◽  
Author(s):  
R. W. Meggs ◽  
C. N. Mitchell ◽  
V. S. C. Howells

Abstract. We use a digisonde at Jicamarca and a chain of GPS receivers on the west side of South America to investigate the effects of the pre-reversal enhancement (PRE) in ExB drift, the asymmetry (Ia) of equatorial ionization anomaly (EIA), and the magnetic activity (Kp) on the generation of equatorial spread F (ESF). Results show that the ESF appears frequently in summer (November, December, January, and February) and equinoctial (March, April, September, and October) months, but rarely in winter (May, June, July, and August) months. The seasonal variation in the ESF is associated with those in the PRE ExB drift and Ia. The larger ExB drift (>20m/s) and smaller |Ia| (<0.3) in summer and equinoctial months provide a preferable condition to development the ESF. Conversely, the smaller ExB drift and larger |Ia| are responsible for the lower ESF occurrence in winter months. Regarding the effects of magnetic activity, the ESF occurrence decreases with increasing Kp in the equinoctial and winter months, but not in the summer months. Furthermore, the larger and smaller ExB drifts are presented under the quiet (Kp<3) and disturbed (Kp≥3) conditions, respectively. These results indicate that the suppression in ESF and the decrease in ExB drifts are mainly caused by the decrease in the eastward electric field.


2020 ◽  
Author(s):  
D. Muñoz ◽  
L. Marcano ◽  
R. Martín-Rodríguez ◽  
L. Simonelli ◽  
A. Serrano ◽  
...  

AbstractMagnetotactic bacteria are aquatic microorganisms with the ability to biomineralise membrane-enclosed magnetic nanoparticles, called magnetosomes. These magnetosomes are arranged into a chain that behaves as a magnetic compass, allowing the bacteria to align in and navigate along the Earth’s magnetic field lines. According to the magneto-aerotactic hypothesis, the purpose of producing magnetosomes is to provide the bacteria with a more efficient movement within the stratified water column, in search of the optimal positions that satisfy their nutritional requirements. However, magnetosomes could have other physiological roles, as proposed in this work. Here we analyse the role of magnetosomes in the tolerance of Magnetospirillum gryphiswaldense MSR-1 to transition metals (Co, Mn, Ni, Zn, Cu). By exposing bacterial populations with and without magnetosomes to increasing concentrations of metals in the growth medium, we observe that the tolerance is significantly higher when bacteria have magnetosomes. The resistance mechanisms triggered in magnetosome-bearing bacteria under metal stress have been investigated by means of x-ray absorption near edge spectroscopy (XANES). XANES experiments were performed both on magnetosomes isolated from the bacteria and on the whole bacteria, aimed to assess whether bacteria use magnetosomes as metal storages, or whether they incorporate the excess metal in other cell compartments. Our findings reveal that the tolerance mechanisms are metal-specific: Mn, Zn and Cu are incorporated in both the magnetosomes and other cell compartments; Co is only incorporated in the magnetosomes, and Ni is incorporated in other cell compartments. In the case of Co, Zn and Mn, the metal is integrated in the magnetosome magnetite mineral core.


2020 ◽  
Author(s):  
Jessy Matar ◽  
Benoit Hubert ◽  
Stan Cowley ◽  
Steve Milan ◽  
Zhonghua Yao ◽  
...  

&lt;p&gt; The coupling between the Earth&amp;#8217;s magnetic field and the interplanetary magnetic field (IMF) transported by the solar wind results in a cycle of magnetic field lines opening and closing generally known as the Dungey substorm cycle, mostly governed by the process of magnetic reconnection. The geomagnetic field lines can therefore have either a closed or an open topology, i.e. lower latitude field lines are closed (map from southern ionosphere to the northern), while higher latitude field lines are open (map from one polar ionosphere into interplanetary space). Closed field lines can trap electrically charged particles that bounce between mirror points located in the North and South hemispheres while drifting in longitude around the Earth, forming the plasmasphere, the radiation belts and the ring current. The outer boundary of the plasmasphere is the plasmapause. Its location is mostly driven by the interplay of the corotation electric field of ionospheric origin, and the convection electric field that results from the interaction between the IMF and the geomagnetic field. At times of prolonged intense coupling between these fields, the response of the magnetosphere becomes global and a geomagnetic storm develops. The ring current created by the motion of the trapped energetic particles intensifies and then decays as the storm abates. This study aims to find a possible relationship between the evolution of the trapped population and the process of magnetic reconnection during storm times. The EUV instrument on board the NASA-IMAGE spacecraft observed the distribution of the trapped helium ions (He+) in the plasmasphere. We consider several cases of intense geomagnetic storms observed by the IMAGE satellite. We identify the plasmapause location (Lpp) during those cases. We find a strong correlation between the Dst index and Lpp. The ring current and the trapped particles are expected to vary during storms. We use the Tsyganenko magnetic field model to map the electric potential between the Heppner-Maynard boundary (HMB) in the ionosphere and the magnetosphere and estimate the voltage and electric field in the vicinity of the plasmapause. The ionospheric electric field is deduced from the ionospheric convection velocity measured by the SuperDARN (SD) radar network at high latitudes. The tangential electric field component of the moving plasmapause boundary is estimated from IMAGE-EUV observations of the plasmasphere and is compared with expectations based on the SD data. We combine measurements of the trapped population from IMAGE-EUV and IMAGE-FUV observations of the aurora to better understand and quantify the variability of the Earth's outer radiation belt during strong storms. The auroral precipitation at ionospheric latitude is studied using FUV imaging and compared to the He+ response during the storms.&lt;/p&gt;


2009 ◽  
Vol 75 (12) ◽  
pp. 3835-3841 ◽  
Author(s):  
Christopher T. Lefèvre ◽  
Tao Song ◽  
Jean-Paul Yonnet ◽  
Long-Fei Wu

ABSTRACT Magnetotactic bacteria have the unique capacity of synthesizing intracellular single-domain magnetic particles called magnetosomes. The magnetosomes are usually organized in a chain that allows the bacteria to align and swim along geomagnetic field lines, a behavior called magnetotaxis. Two mechanisms of magnetotaxis have been described. Axial magnetotactic cells swim in both directions along magnetic field lines. In contrast, polar magnetotactic cells swim either parallel to the geomagnetic field lines toward the North Pole (north seeking) or antiparallel toward the South Pole (south seeking). In this study, we used a magnetospectrophotometry (MSP) assay to characterize both the axial magnetotaxis of “Magnetospirillum magneticum” strain AMB-1 and the polar magnetotaxis of magneto-ovoid strain MO-1. Two pairs of Helmholtz coils were mounted onto the cuvette holder of a common laboratory spectrophotometer to generate two mutually perpendicular homogeneous magnetic fields parallel or perpendicular to the light beam. The application of magnetic fields allowed measurements of the change in light scattering resulting from cell alignment in a magnetic field or in absorbance due to bacteria swimming across the light beam. Our results showed that MSP is a powerful tool for the determination of bacterial magnetism and the analysis of alignment and swimming of magnetotactic bacteria in magnetic fields. Moreover, this assay allowed us to characterize south-seeking derivatives and non-magnetosome-bearing strains obtained from north-seeking MO-1 cultures. Our results suggest that oxygen is a determinant factor that controls magnetotactic behavior.


2005 ◽  
Vol 23 (3) ◽  
pp. 745-751 ◽  
Author(s):  
C.-C. Lee ◽  
J.-Y. Liu ◽  
B. W. Reinisch ◽  
W.-S. Chen ◽  
F.-D. Chu

Abstract. We use a digisonde at Jicamarca and a chain of GPS receivers on the west side of South America to investigate the effects of the pre-reversal enhancement (PRE) in ExB drift, the asymmetry (Ia) of equatorial ionization anomaly (EIA), and the magnetic activity (Kp) on the generation of equatorial spread F (ESF). Results show that the ESF appears frequently in summer (November, December, January, and February) and equinoctial (March, April, September, and October) months, but rarely in winter (May, June, July, and August) months. The seasonal variation in the ESF is associated with those in the PRE ExB drift and Ia. The larger ExB drift (>20m/s) and smaller |Ia| (<0.3) in summer and equinoctial months provide a preferable condition to development the ESF. Conversely, the smaller ExB drift and larger |Ia| are responsible for the lower ESF occurrence in winter months. Regarding the effects of magnetic activity, the ESF occurrence decreases with increasing Kp in the equinoctial and winter months, but not in the summer months. Furthermore, the larger and smaller ExB drifts are presented under the quiet (Kp<3) and disturbed (Kp≥3) conditions, respectively. These results indicate that the suppression in ESF and the decrease in ExB drifts are mainly caused by the decrease in the eastward electric field.


2006 ◽  
Vol 24 (3) ◽  
pp. 915-940 ◽  
Author(s):  
A. V. Pavlov ◽  
S. Fukao ◽  
S. Kawamura

Abstract. We have presented a comparison between the modeled NmF2 and hmF2, and NmF2 and hmF2, which were observed in the low-latitude ionosphere simultaneously by the Kokubunji, Yamagawa, Okinawa, Manila, Vanimo, and Darwin ionospheric sounders, by the middle and upper atmosphere (MU) radar during 17-22 March 1990, and by the Arecibo radar for the time period of 20-22 March 1990. A comparison between the electron and ion temperatures measured by the MU and Arecibo radars and those produced by the model of the ionosphere and plasmasphere is presented. The empirical zonal electric field, the meridional neutral wind taken from the HWM90 wind model, and the NRLMSISE-00 neutral temperature and densities are corrected so that the model results agree reasonably with the ionospheric sounder observations, and the MU and Arecibo radar data. It is proved that the nighttime weakening of the equatorial zonal electric field (in comparison with that produced by the empirical model of Fejer and Scherliess (1997) or Scherliess and Fejer (1999)), in combination with the corrected wind-induced plasma drift along magnetic field lines, provides the development of the nighttime enhancements in NmF2 observed over Manila during 17-22 March 1990. As a result, the new physical mechanism of the nighttime NmF2 enhancement formation close to the geomagnetic equator includes the nighttime weakening of the equatorial zonal electric field and equatorward nighttime plasma drift along magnetic field lines caused by neutral wind in the both geomagnetic hemispheres. It is found that the latitudinal positions of the crests depend on the E×B drift velocity and on the neutral wind velocity. The relative role of the main mechanisms of the equatorial anomaly suppression observed during geomagnetic storms is studied for the first time in terms of storm-time variations of the model crest-to-trough ratios of the equatorial anomaly. During most of the studied time period, a total contribution from meridional neutral winds and variations in the zonal electric field to the equatorial anomaly changes is larger than that from geomagnetic storm disturbances in the neutral temperature and densities. Vibrationally excited N2 and O2 promote the equatorial anomaly enhancement during the predominant part of the studied time period, however, the role of vibrationally excited N2 and O2 in the development of the equatorial anomaly is not significant. The asymmetries in the neutral wind and densities relative to the geomagnetic equator are responsible for the north-south asymmetry in NmF2 and hmF2, and for the asymmetry between the values of the crest-to-trough ratios of the Northern and Southern Hemispheres. The model simulations provide evidence in favor of an asymmetry in longitude of the energy input into the auroral region of the Northern Hemisphere on 21 March 1990.


Sign in / Sign up

Export Citation Format

Share Document