scholarly journals The sunspot cycle, the QBO, and the total ozone over Northeastern Europe: a connection through the dynamics of stratospheric circulation

1997 ◽  
Vol 15 (12) ◽  
pp. 1595-1603 ◽  
Author(s):  
B. Soukharev

Abstract. The interaction between the factors of the quasi-biennial oscillation (QBO) and the 11-year solar cycle is considered as an separate factor influencing the interannual January-March variations of total ozone over Northeastern Europe. Linear correlation analysis and the running correlation method are used to examine possible connections between ozone and solar activity at simultaneous moment the QBO phase. Statistically significant correlations between the variations of total ozone in February and, partially, in March, and the sunspot numbers during the different phases of QBO are found. The running correlation method between the ozone and the equatorial zonal wind demonstrates a clear modulation of 11-y solar signal for February and March. Modulation is clearer if the QBO phases are defined at the level of 50 hPa rather than at 30 hPa. The same statistical analyses are conducted also for possible connections between the index of stratospheric circulation C1 and sunspot numbers considering the QBO phase. Statistically significant connections are found for February. The running correlations between the index C1 and the equatorial zonal wind show the clear modulation of 11-y solar signal for February and March. Based on the obtained correlations between the interannual variations of ozone and index C1, it may be concluded that a connection between solar cycle – QBO – ozone occurs through the dynamics of stratospheric circulation.

2006 ◽  
Vol 6 (2) ◽  
pp. 349-374 ◽  
Author(s):  
W. Steinbrecht ◽  
B. Haßler ◽  
C. Brühl ◽  
M. Dameris ◽  
M. A. Giorgetta ◽  
...  

Abstract. We report results from a multiple linear regression analysis of long-term total ozone observations (1979 to 2000, by TOMS/SBUV), of temperature reanalyses (1958 to 2000, NCEP), and of two chemistry-climate model simulations (1960 to 1999, by ECHAM4.L39(DLR)/CHEM (=E39/C), and MAECHAM4-CHEM). The model runs are transient experiments, where observed sea surface temperatures, increasing source gas concentrations (CO2, CFCs, CH4, N2O, NOx), 11-year solar cycle, volcanic aerosols and the quasi-biennial oscillation (QBO) are all accounted for. MAECHAM4-CHEM covers the atmosphere from the surface up to 0.01 hPa (≈80 km). For a proper representation of middle atmosphere (MA) dynamics, it includes a parametrization for momentum deposition by dissipating gravity wave spectra. E39/C, on the other hand, has its top layer centered at 10 hPa (≈30 km). It is targeted on processes near the tropopause, and has more levels in this region. Despite some problems, both models generally reproduce the observed amplitudes and much of the observed low-latitude patterns of the various modes of interannual variability in total ozone and lower stratospheric temperature. In most aspects MAECHAM4-CHEM performs slightly better than E39/C. MAECHAM4-CHEM overestimates the long-term decline of total ozone, whereas underestimates the decline over Antarctica and at northern mid-latitudes. The true long-term decline in winter and spring above the Arctic may be underestimated by a lack of TOMS/SBUV observations in winter, particularly in the cold 1990s. Main contributions to the observed interannual variations of total ozone and lower stratospheric temperature at 50 hPa come from a linear trend (up to -10 DU/decade at high northern latitudes, up to -40 DU/decade at high southern latitudes, and around -0.7 K/decade over much of the globe), from the intensity of the polar vortices (more than 40 DU, or 8 K peak to peak), the QBO (up to 20 DU, or 2 K peak to peak), and from tropospheric weather (up to 20 DU, or 2 K peak to peak). Smaller variations are related to the 11-year solar cycle (generally less than 15 DU, or 1 K), or to ENSO (up to 10 DU, or 1 K). These observed variations are replicated well in the simulations. Volcanic eruptions have resulted in sporadic changes (up to -30 DU, or +3 K). At low latitudes, patterns are zonally symmetric. At higher latitudes, however, strong, zonally non-symmetric signals are found close to the Aleutian Islands or south of Australia. Such asymmetric features appear in the model runs as well, but often at different longitudes than in the observations. The results point to a key role of the zonally asymmetric Aleutian (or Australian) stratospheric anti-cyclones for interannual variations at high-latitudes, and for coupling between polar vortex strength, QBO, 11-year solar cycle and ENSO.


2010 ◽  
Vol 23 (8) ◽  
pp. 2213-2222 ◽  
Author(s):  
Thomas H. A. Frame ◽  
Lesley J. Gray

Abstract Multiple linear regression is used to diagnose the signal of the 11-yr solar cycle in zonal-mean zonal wind and temperature in the 40-yr ECMWF Re-Analysis (ERA-40) dataset. The results of previous studies are extended to 2008 using data from ECMWF operational analyses. This analysis confirms that the solar signal found in previous studies is distinct from that of volcanic aerosol forcing resulting from the eruptions of El Chichón and Mount Pinatubo, but it highlights the potential for confusion of the solar signal and lower-stratospheric temperature trends. A correction to an error that is present in previous results of Crooks and Gray, stemming from the use of a single daily analysis field rather than monthly averaged data, is also presented.


2005 ◽  
Vol 5 (5) ◽  
pp. 9207-9248 ◽  
Author(s):  
W. Steinbrecht ◽  
B. Haßler ◽  
C. Brühl ◽  
M. Dameris ◽  
M. A. Giorgetta ◽  
...  

Abstract. We report results from a multiple linear regression analysis of long-term total ozone observations (1979 to 2002, by TOMS/SBUV), of temperature reanalyses (1958 to 2002, NCEP), and of two chemistry-climate model simulations (1960 to 1999, by ECHAM4.L39(DLR)/CHEM (=E39/C), and MAECHAM4-CHEM). The model runs are transient experiments, where observed sea surface temperatures, increasing source gas concentrations (CO2, CFCs, CH4, N2O, NOx), 11-year solar cycle, volcanic aerosols and the quasi-biennial oscillation (QBO) are all accounted for. MAECHAM4-CHEM covers the atmosphere from the surface up to 0.01 hPa (≈80 km). For a proper representation of middle atmosphere (MA) dynamics, it includes a parametrization for momentum deposition by dissipating gravity wave spectra. E39/C, on the other hand, has its top layer centered at 10 hPa (≈30 km). It is targeted on processes near the tropopause, and has more levels in this region. Both models reproduce the observed amplitudes and much of the observed low-latitude patterns of the various modes of interannual variability, MAECHAM4-CHEM somewhat better than E39/C. Total ozone and lower stratospheric temperature show similar patterns. Main contributions to the interannual variations of total ozone and lower stratospheric temperature at 50 hPa come from a linear trend (up to −30 Dobson Units (DU) per decade, or −1.5 K/decade), the QBO (up to 25 DU, or 2.5 K peak to peak), the intensity of the polar vortices (up to 50 DU, or 5 K peak to peak), and from tropospheric weather (up to 30 DU, or 3 K peak to peak). Smaller variations are related to the 11-year solar cycle (generally less than 25 DU, or 2.5 K), and to ENSO (up to 15 DU, or 1.5 K). Volcanic eruptions have resulted in sporadic changes (up to −40 DU, or +3 K). Most stratospheric variations are connected to the troposphere, both in observations and simulations. At low latitudes, patterns are zonally symmetric. At higher latitudes, however, strong, zonally non-symmetric signals are found close to the Aleutian Islands or south of Australia. Such asymmetric features appear in the model runs as well, but often at different longitudes than in the observations. The results point to a key role of the zonally asymmetric Aleutian (or Australian) stratospheric anti-cyclones for interannual variations at high- latitudes, and for coupling between polar vortex strength, QBO, 11-year solar cycle and ENSO.


1990 ◽  
Vol 43 (3) ◽  
pp. 357 ◽  
Author(s):  
JO Murphy

Initially, the rise and fall components of the ll-year solar sunspot cycle are approximated by separate least-squares polynomials for four cycle classifications, which are determined by the magnitude of the average of the annual sunspot numbers per cycle. Following, a method is formulated to generate detailed reconstruction of the annual variation of a solar cycle based on this cycle average, and the results obtained for cycles -4 through to 21 are compared with the annual Zurich values. This procedure is then employed to establish annual sunspot numbers using published average cycle values obtained from atmospheric carbon 14 variations, which have been derived from the chemical analysis of tree ring sections. The reconstructed sequences are correlated with the observed cycle values and with tree ring width index chronologies which exhibit a significant II-year periodicity. It is anticipated that the long carbon 14 records and parallel dendrochronological data could be employed to obtain a more detailed portrayal of previous periods of strong solar activity than that given by current estimates based on historical records.


2020 ◽  
Author(s):  
Yoshio Kawatani ◽  
Toshihiko Hirooka ◽  
Kevin Hamilton ◽  
Anne K. Smith ◽  
Masatomo Fujiwara

Abstract. This paper reports on a project to compare the representation of the semiannual oscillation (SAO) in the equatorial stratosphere and lower mesosphere among six major global atmospheric reanalysis datasets and with recent satellite SABER and MLS observations. All reanalyses have a good representation of the quasi-biennial oscillation (QBO) in the equatorial lower and middle stratosphere and each displays a clear SAO centered near the stratopause. However, the differences among reanalyses are much more substantial in the SAO region than in the QBO dominated region. The degree of disagreement among the reanalyses is characterized by the standard deviation (SD) of the monthly-mean zonal wind and temperature; this depends on latitude, longitude, height, and time. The zonal wind SD displays a prominent equatorial maximum that increases with height, while the temperature SD is minimum near the equator and largest in the polar regions. Along the equator the zonal wind SD is smallest around the longitude of Singapore where consistently high-quality near-equatorial radiosonde observations are available. Interestingly the near-Singapore minimum in SD is evident to at least ~ 3 hPa, i.e. considerably higher than the usual ~ 10 hPa ceiling for in situ radiosonde observations. Our measurement of the agreement among the reanalyses shows systematic improvement over the period considered (1980–2016), up to near the stratopause. Characteristics of the SAO at 1 hPa, such as its detailed time variation and the displacement off the equator of the zonal wind SAO amplitude maximum, differ significantly among the reanalyses. Disagreement among the reanalyses becomes still greater above 1 hPa. One of the reanalyses in our study also has a version produced without assimilating satellite observations and a comparison of the SAO in these two versions demonstrates the very great importance of satellite derived temperatures in the realistic analysis of the tropical upper stratospheric circulation.


2003 ◽  
Vol 3 (4) ◽  
pp. 3411-3449 ◽  
Author(s):  
W. Steinbrecht ◽  
B. Hassler ◽  
H. Claude ◽  
P. Winkler ◽  
R. S. Stolarski

Abstract. This study gives an overview of interannual variations of total ozone and 50hPa temperature. It is based on newer and longer records from the 1979 to 2001 Total Ozone Monitoring Spectrometer (TOMS) and Solar Backscatter Ultraviolet (SBUV) instruments, and on US National Center for Environmental Prediction (NCEP) reanalyses. Multiple linear least squares regression is used to quantify various natural and anthropogenic influences. For most influences the total ozone and 50hPa temperature responses look very similar, reflecting a very close coupling. As a rule of thumb, a 10 Dobson Unit (DU) change in total ozone corresponds to a 1K change of 50hPa temperature. Large influences come from the linear trend term, up to −30 DU or −1.5 K/decade, from terms related to polar vortex strength, up to 50 DU or 5 K (typical, minimum to maximum), from tropospheric meteorology, up to 30 DU or 3 K, or from the Quasi-Biennial Oscillation (QBO), up to 25 DU or 2.5 K. The 11-year solar cycle, up to 25 DU or 2.5 K, El Niño/Southern Oscillation (ENSO), up to 10 DU or 1 K, are somewhat smaller influences. Stratospheric aerosol after the 1991 Pinatubo eruption lead to warming up to 3 K at low latitudes and to ozone depletion up to 40 DU at high latitudes. Response to QBO, polar vortex strength, and to a lesser degree to ENSO, exhibit an inverse correlation between low latitudes and higher latitudes. Responses to the solar cycle or 400 hPa temperature, however, have the same sign over most of the globe. Responses are usually zonally symmetric at low and mid-latitudes, but asymmetric at high latitudes. There, solar cycle, QBO or ENSO influence position and strength of the stratospheric anti-cyclones over the Aleutians and south of Australia.


2014 ◽  
Vol 14 (11) ◽  
pp. 5251-5269 ◽  
Author(s):  
G. Chiodo ◽  
D. R. Marsh ◽  
R. Garcia-Herrera ◽  
N. Calvo ◽  
J. A. García

Abstract. We investigate the relative role of volcanic eruptions, El Niño–Southern Oscillation (ENSO), and the quasi-biennial oscillation (QBO) in the quasi-decadal signal in the tropical stratosphere with regard to temperature and ozone commonly attributed to the 11 yr solar cycle. For this purpose, we perform transient simulations with the Whole Atmosphere Community Climate Model forced from 1960 to 2004 with an 11 yr solar cycle in irradiance and different combinations of other forcings. An improved multiple linear regression technique is used to diagnose the 11 yr solar signal in the simulations. One set of simulations includes all observed forcings, and is thereby aimed at closely reproducing observations. Three idealized sets exclude ENSO variability, volcanic aerosol forcing, and QBO in tropical stratospheric winds, respectively. Differences in the derived solar response in the tropical stratosphere in the four sets quantify the impact of ENSO, volcanic events and the QBO in attributing quasi-decadal changes to the solar cycle in the model simulations. The novel regression approach shows that most of the apparent solar-induced lower-stratospheric temperature and ozone increase diagnosed in the simulations with all observed forcings is due to two major volcanic eruptions (i.e., El Chichón in 1982 and Mt. Pinatubo in 1991). This is caused by the alignment of these eruptions with periods of high solar activity. While it is feasible to detect a robust solar signal in the middle and upper tropical stratosphere, this is not the case in the tropical lower stratosphere, at least in a 45 yr simulation. The present results suggest that in the tropical lower stratosphere, the portion of decadal variability that can be unambiguously linked to the solar cycle may be smaller than previously thought.


2020 ◽  
Vol 20 (14) ◽  
pp. 9115-9133
Author(s):  
Yoshio Kawatani ◽  
Toshihiko Hirooka ◽  
Kevin Hamilton ◽  
Anne K. Smith ◽  
Masatomo Fujiwara

Abstract. This paper reports on a project to compare the representation of the semiannual oscillation (SAO) in the equatorial stratosphere and lower mesosphere within six major global atmospheric reanalysis datasets and with recent satellite Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) and Microwave Limb Sounder (MLS) observations. All reanalyses have a good representation of the quasi-biennial oscillation (QBO) in the equatorial lower and middle stratosphere and each displays a clear SAO centered near the stratopause. However, the differences among reanalyses are much more substantial in the SAO region than in the QBO-dominated region. The degree of disagreement among the reanalyses is characterized by the standard deviation (SD) of the monthly mean zonal wind and temperature; this depends on latitude, longitude, height, and time. The zonal wind SD displays a prominent equatorial maximum that increases with height, while the temperature SD reaches a minimum near the Equator and is largest in the polar regions. Along the Equator, the zonal wind SD is smallest around the longitude of Singapore, where consistently high-quality near-equatorial radiosonde observations are available. Interestingly, the near-Singapore minimum in SD is evident to at least ∼3 hPa, i.e., considerably higher than the usual ∼10 hPa ceiling for in situ radiosonde observations. Our measurement of the agreement among the reanalyses shows systematic improvement over the period considered (1980–2016), up to near the stratopause. Characteristics of the SAO at 1 hPa, such as its detailed time variation and the displacement off the Equator of the zonal wind SAO amplitude maximum, differ significantly among the reanalyses. Disagreement among the reanalyses becomes still greater above 1 hPa. One of the reanalyses in our study also has a version produced without assimilating satellite observations, and a comparison of the SAO in these two versions demonstrates the very great importance of satellite-derived temperatures in the realistic analysis of the tropical upper stratospheric circulation.


2012 ◽  
Vol 12 (5) ◽  
pp. 13161-13199 ◽  
Author(s):  
L. Frossard ◽  
H. E. Rieder ◽  
M. Ribatet ◽  
J. Staehelin ◽  
J. A. Maeder ◽  
...  

Abstract. We use models for mean and extreme values of total column ozone on spatial scales to analyze "fingerprints" of atmospheric dynamics and chemistry on long-term ozone changes at northern and southern mid-latitudes. The r-largest order statistics method is used for pointwise analysis of extreme events in low and high total ozone (termed ELOs and EHOs, respectively). For the corresponding mean value analysis a pointwise autoregressive moving average model (ARMA) is used. The statistical models include important atmospheric covariates to describe the dynamical and chemical state of the atmosphere: the solar cycle, the Quasi-Biennial Oscillation (QBO), ozone depleting substances (ODS) in terms of equivalent effective stratospheric chlorine (EESC), the North Atlantic Oscillation (NAO), the Antarctic Oscillation (AAO), the El~Niño/Southern Oscillation (ENSO), and aerosol load after the volcanic eruptions of El Chichón and Mt. Pinatubo. The influence of the individual covariates on mean and extreme levels in total column ozone is derived on a grid cell basis. The results show that "fingerprints", i.e., significant influence, of dynamical and chemical features are captured in both the "bulk" and the tails of the ozone distribution, respectively described by means and EHOs/ELOs. While results for the solar cycle, QBO and EESC are in good agreement with findings of earlier studies, unprecedented spatial fingerprints are retrieved for the dynamical covariates.


Sign in / Sign up

Export Citation Format

Share Document