scholarly journals Global distribution of total ozone and lower stratospheric temperature variations

2003 ◽  
Vol 3 (4) ◽  
pp. 3411-3449 ◽  
Author(s):  
W. Steinbrecht ◽  
B. Hassler ◽  
H. Claude ◽  
P. Winkler ◽  
R. S. Stolarski

Abstract. This study gives an overview of interannual variations of total ozone and 50hPa temperature. It is based on newer and longer records from the 1979 to 2001 Total Ozone Monitoring Spectrometer (TOMS) and Solar Backscatter Ultraviolet (SBUV) instruments, and on US National Center for Environmental Prediction (NCEP) reanalyses. Multiple linear least squares regression is used to quantify various natural and anthropogenic influences. For most influences the total ozone and 50hPa temperature responses look very similar, reflecting a very close coupling. As a rule of thumb, a 10 Dobson Unit (DU) change in total ozone corresponds to a 1K change of 50hPa temperature. Large influences come from the linear trend term, up to −30 DU or −1.5 K/decade, from terms related to polar vortex strength, up to 50 DU or 5 K (typical, minimum to maximum), from tropospheric meteorology, up to 30 DU or 3 K, or from the Quasi-Biennial Oscillation (QBO), up to 25 DU or 2.5 K. The 11-year solar cycle, up to 25 DU or 2.5 K, El Niño/Southern Oscillation (ENSO), up to 10 DU or 1 K, are somewhat smaller influences. Stratospheric aerosol after the 1991 Pinatubo eruption lead to warming up to 3 K at low latitudes and to ozone depletion up to 40 DU at high latitudes. Response to QBO, polar vortex strength, and to a lesser degree to ENSO, exhibit an inverse correlation between low latitudes and higher latitudes. Responses to the solar cycle or 400 hPa temperature, however, have the same sign over most of the globe. Responses are usually zonally symmetric at low and mid-latitudes, but asymmetric at high latitudes. There, solar cycle, QBO or ENSO influence position and strength of the stratospheric anti-cyclones over the Aleutians and south of Australia.

2003 ◽  
Vol 3 (5) ◽  
pp. 1421-1438 ◽  
Author(s):  
W. Steinbrecht ◽  
B. Hassler ◽  
H. Claude ◽  
P. Winkler ◽  
R. S. Stolarski

Abstract. This study gives an overview of interannual variations of total ozone and 50 hPa temperature. It is based on newer and longer records from the 1979 to 2001 Total Ozone Monitoring Spectrometer (TOMS) and Solar Backscatter Ultraviolet (SBUV) instruments, and on US National Center for Environmental Prediction (NCEP) reanalyses. Multiple linear least squares regression is used to attribute variations to various natural and anthropogenic explanatory variables. Usually, maps of total ozone and 50 hPa temperature variations look very similar, reflecting a very close coupling between the two. As a rule of thumb, a 10 Dobson Unit (DU) change in total ozone corresponds to a 1 K change of 50 hPa temperature. Large variations come from the linear trend term, up to -30 DU or -1.5 K/decade, from terms related to polar vortex strength, up to 50 DU or 5 K (typical, minimum to maximum), from tropospheric meteorology, up to 30 DU or 3 K, or from the Quasi-Biennial Oscillation (QBO), up to 25 DU or 2.5 K. The 11-year solar cycle, up to 25 DU or 2.5 K, or El Niño/Southern Oscillation (ENSO), up to 10 DU or 1 K, are contributing smaller variations. Stratospheric aerosol after the 1991 Pinatubo eruption lead to warming up to 3 K at low latitudes and to ozone depletion up to 40 DU at high latitudes. Variations attributed to QBO, polar vortex strength, and to a lesser degree to ENSO, exhibit an inverse correlation between low latitudes and higher latitudes. Variations related to the solar cycle or 400 hPa temperature, however, have the same sign over most of the globe. Variations are usually zonally symmetric at low and mid-latitudes, but asymmetric at high latitudes. There, position and strength of the stratospheric anti-cyclones over the Aleutians and south of Australia appear to vary with the phases of solar cycle, QBO or ENSO.


2021 ◽  
pp. 1
Author(s):  
X. R. Zhao ◽  
Z. Sheng ◽  
H. Q. Shi ◽  
L. B. Weng ◽  
Y. He

AbstractUsing temperature data measured by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument from February 2002 to March 2020, the temperature linear trend and temperature responses to the solar cycle (SC), Quasi-Biennial Oscillation (QBO), and El Niño-Southern Oscillation (ENSO) were investigated from 20 km to 110 km for the latitude range of 50°S-50°N. A four-component harmonic fit was used to remove the seasonal variation from the observed monthly temperature series. Multiple linear regression (MLR) was applied to analyze the linear trend, SC, QBO, and ENSO terms. In this study, the near-global mean temperature shows consistent cooling trends throughout the entire middle atmosphere, ranging from -0.28 to -0.97 K/decade. Additionally, it shows positive responses to the solar cycle, varying from -0.05 to 4.53 K/100sfu. A solar temperature response boundary between 50°S and 50°N is given, above which the atmospheric temperature is strongly affected by solar activity. The boundary penetrates deep below the stratopause to ~ 42 km over the tropical region and rises to higher altitudes with latitude. Temperature responses to the QBO and ENSO can be observed up to the upper mesosphere and lower thermosphere. In the equatorial region, 40%-70% of the total variance is explained by QBO signals in the stratosphere and 30%-50% is explained by the solar signal in the upper middle atmosphere. Our results, obtained from 18-year SABER observations, are expected to be an updated reliable estimation of the middle atmosphere temperature variability for the stratospheric ozone recovery period.


2021 ◽  
Author(s):  
Juliana Jaen ◽  
Toralf Renkwitz ◽  
Jorge L. Chau ◽  
Maosheng He ◽  
Peter Hoffmann ◽  
...  

Abstract. Specular meteor radars (SMRs) and partial reflection radars (PRRs) have been observing mesospheric winds for more than a solar cycle over Germany (~54 °N) and northern Norway (~69 °N). This work investigates the mesospheric mean zonal wind and the zonal mean geostrophic zonal wind from the Microwave Limb Sounder (MLS) over these two regions between 2004 and 2020. Our study focuses on the summer when strong planetary waves are absent and the stratospheric and tropospheric conditions are relatively stable. We establish two definitions of the summer length according to the zonal wind reversals: (1) the mesosphere and lower thermosphere summer length (MLT-SL) using SMR and PRR winds, and (2) the mesosphere summer length (M-SL) using PRR and MLS. Under both definitions, the summer begins around April and ends around mid-September. The largest year to year variability is found in the summer beginning in both definitions, particularly at high-latitudes, possibly due to the influence of the polar vortex. At high-latitudes, the year 2004 has a longer summer length compared to the mean value for MLT-SL, as well as 2012 for both definitions. The M-SL exhibits an increasing trend over the years, while MLT-SL does not have a well-defined trend. We explore a possible influence of solar activity, as well as large-scale atmospheric influences (e.g. quasi-biennial oscillations (QBO), El Niño-southern oscillation (ENSO), major sudden stratospheric warming events). We complement our work with an extended time series of 31 years at mid-latitudes using only PRR winds. In this case, the summer length shows a breakpoint, suggesting a non-uniform trend, and periods similar to those known for ENSO and QBO.


2007 ◽  
Vol 7 (3) ◽  
pp. 6189-6228 ◽  
Author(s):  
H. Garny ◽  
G. E. Bodeker ◽  
M. Dameris

Abstract. Changes in climate are likely to drive changes in stratospheric mixing with associated implications for changes in transport of ozone from tropical source regions to higher latitudes, transport of water vapour and source gas degradation products from the tropical tropopause layer into the mid-latitude lower stratosphere, and changes in the meridional distribution of long-lived trace gases. To diagnose long-term changes in stratospheric mixing, global monthly fields of Lyapunov exponents were calculated on the 450 K, 550 K, and 650 K isentropic surfaces by applying a trajectory model to wind fields from NCEP/NCAR reanalyses over the period 1979 to 2005. Potential underlying geophysical drivers of trends and variability in these mixing fields were investigated by applying a least squares regression model, which included basis functions for a mean annual cycle, seasonally dependent linear trends, the quasi-biennial oscillation (QBO), the solar cycle, and the El Niño Southern Oscillation (ENSO), to zonal mean time series of the Lyapunov exponents. Long-term positive trends in mixing are apparent over southern middle to high latitudes at 450 K through most of the year, while negative trends over southern high latitudes are apparent at 650 K from May to August. Wintertime negative trends in mixing over northern mid-latitudes are apparent at 550 K and 650 K. Over low latitudes, within 40° of the equator, the QBO exerts a strong influence on mixing at all three analysis levels. This QBO influence is strongly modulated by the annual cycle and shows a phase shift across the subtropical mixing barrier. Solar cycle and ENSO influences on mixing are generally not significant. The diagnosed long-term changes in mixing should aid the interpretation of trends in stratospheric trace gases.


2020 ◽  
Author(s):  
Antti Salminen ◽  
Timo Asikainen ◽  
Ville Maliniemi ◽  
Kalevi Mursula

<p>During the winter, a polar vortex, a strong westerly thermal wind, forms in the polar stratosphere. In the northern hemisphere the polar vortex varies significantly during and between winters. The Sun and the solar wind affect the polar vortex via two separate factors: electromagnetic radiation and energetic particle precipitation. Earlier studies have shown that increased energetic electron precipitation (EEP) decreases ozone in the polar upper atmosphere and strengthens the northern polar vortex, while solar irradiance affects temperature and ozone in the stratosphere directly at low latitudes and indirectly at high latitudes. In addition to the solar-related drivers, the northern polar vortex is also affected by different atmospheric internal factors such as Quasi-Biennial Oscillation (QBO), El-Nino Southern Oscillation (ENSO) and volcanic aerosols. Several studies have shown that the QBO modulates the effects that the solar-related drivers and ENSO cause to the polar vortex. In this study we examine and compare effects of the two solar-related drivers (solar radiation and EEP) and three atmospheric internal factors (QBO, ENSO and volcanic aerosols) on the polar vortex. We use multiple linear regression analysis to estimate the effects of each factor on temperature and zonal wind. We concentrate on the northern wintertime stratosphere and troposphere and examine the period of 1957-2017 using a combination of ERA-40 and ERA-Interim re-analysis data. We also study these effects separately in the two QBO phases. While we confirm that increased EEP is associated with a strengthened polar vortex, in accordance with the earlier studies, we further show that EEP is the largest and most significant factor among those studied affecting  the northern polar vortex variability. We also find that the EEP effect on polar vortex is particularly strong in the easterly phase of QBO while in the westerly phase the EEP effect is weakened and does not stand out from other effects.</p>


2014 ◽  
Vol 14 (16) ◽  
pp. 8461-8482 ◽  
Author(s):  
J. S. Knibbe ◽  
R. J. van der A ◽  
A. T. J. de Laat

Abstract. Multiple-regression analyses have been performed on 32 years of total ozone column data that was spatially gridded with a 1 × 1.5° resolution. The total ozone data consist of the MSR (Multi Sensor Reanalysis; 1979–2008) and 2 years of assimilated SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) ozone data (2009–2010). The two-dimensionality in this data set allows us to perform the regressions locally and investigate spatial patterns of regression coefficients and their explanatory power. Seasonal dependencies of ozone on regressors are included in the analysis. A new physically oriented model is developed to parameterize stratospheric ozone. Ozone variations on nonseasonal timescales are parameterized by explanatory variables describing the solar cycle, stratospheric aerosols, the quasi-biennial oscillation (QBO), El Niño–Southern Oscillation (ENSO) and stratospheric alternative halogens which are parameterized by the effective equivalent stratospheric chlorine (EESC). For several explanatory variables, seasonally adjusted versions of these explanatory variables are constructed to account for the difference in their effect on ozone throughout the year. To account for seasonal variation in ozone, explanatory variables describing the polar vortex, geopotential height, potential vorticity and average day length are included. Results of this regression model are compared to that of a similar analysis based on a more commonly applied statistically oriented model. The physically oriented model provides spatial patterns in the regression results for each explanatory variable. The EESC has a significant depleting effect on ozone at mid- and high latitudes, the solar cycle affects ozone positively mostly in the Southern Hemisphere, stratospheric aerosols affect ozone negatively at high northern latitudes, the effect of QBO is positive and negative in the tropics and mid- to high latitudes, respectively, and ENSO affects ozone negatively between 30° N and 30° S, particularly over the Pacific. The contribution of explanatory variables describing seasonal ozone variation is generally large at mid- to high latitudes. We observe ozone increases with potential vorticity and day length and ozone decreases with geopotential height and variable ozone effects due to the polar vortex in regions to the north and south of the polar vortices. Recovery of ozone is identified globally. However, recovery rates and uncertainties strongly depend on choices that can be made in defining the explanatory variables. The application of several trend models, each with their own pros and cons, yields a large range of recovery rate estimates. Overall these results suggest that care has to be taken in determining ozone recovery rates, in particular for the Antarctic ozone hole.


2021 ◽  
Author(s):  
Wentao Tang ◽  
Shao Dong ZHANG ◽  
Chun Ming HUANG ◽  
Kai Ming HUANG ◽  
Yun Gong ◽  
...  

Abstract The global amplitude of the westward propagating quasi-16-day wave (16DW) with wavenumber 1 (Q16W1), the strongest component of 16DW, is derived from European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis temperature data set from February 1979 to January 2018. The strong climatological mean amplitudes of the Q16W1 appear in winter in the upper stratosphere at high latitudes in both hemispheres, and the wave amplitude is stronger in the Northern Hemisphere (NH) than in the Southern Hemisphere (SH). Multivariate linear regression is applied to calculate responses of the Q16W1 amplitude to QBO (quasi-biennial oscillation), ENSO (El Niño-Southern Oscillation), solar activity and the linear trend of the Q16W1 amplitude. The QBO signatures of the Q16W1 amplitude are mainly located in the stratosphere. In addition to the significant QBO response in the low latitude and low stratosphere, the largest QBO response occurs in the region with the strongest Q16W1 climatology amplitude. There no significant responses to ENSO and solar activity are observed. The linear trend of the monthly mean Q16W1 amplitude is generally positive, especially in the mid-high latitudes of the stratosphere. The trend is asymmetric about the equator and significantly stronger in the NH than in the SH. The trend shows obvious seasonal changes, that is, stronger in winter, weaker in spring and autumn. Further investigation suggests that the background and local instability trends contribute most of the increasing trend of the Q16W1 amplitude. In winter in both hemispheres, the weakening trend of eastward zonal wind provide more favourable background wind for Q16W1 upward propagation, in autumn and winter in the NH and in spring, autumn and winter in the SH, the increasing trend of local instability may enhance the wave excitation.


2014 ◽  
Vol 14 (4) ◽  
pp. 5323-5373 ◽  
Author(s):  
J. S. Knibbe ◽  
R. J. van der A ◽  
A. T. J. de Laat

Abstract. Multiple-regressions analysis have been performed on 32 years of total ozone column data that was spatially gridded with a 1° × 1.5° resolution. The total ozone data consists of the MSR (Multi Sensor Reanalysis; 1979–2008) and two years of assimilated SCIAMACHY ozone data (2009–2010). The two-dimensionality in this data-set allows us to perform the regressions locally and investigate spatial patterns of regression coefficients and their explanatory power. Seasonal dependencies of ozone on regressors are included in the analysis. A new physically oriented model is developed to parameterize stratospheric ozone. Ozone variations on non-seasonal timescales are parameterized by explanatory variables describing the solar cycle, stratospheric aerosols, the quasi-biennial oscillation (QBO), El Nino (ENSO) and stratospheric alternative halogens (EESC). For several explanatory variables, seasonally adjusted versions of these explanatory variables are constructed to account for the difference in their effect on ozone throughout the year. To account for seasonal variation in ozone, explanatory variables describing the polar vortex, geopotential height, potential vorticity and average day length are included. Results of this regression model are compared to that of similar analysis based on a more commonly applied statistically oriented model. The physically oriented model provides spatial patterns in the regression results for each explanatory variable. The EESC has a significant depleting effect on ozone at high and mid-latitudes, the solar cycle affects ozone positively mostly at the Southern Hemisphere, stratospheric aerosols affect ozone negatively at high Northern latitudes, the effect of QBO is positive and negative at the tropics and mid to high-latitudes respectively and ENSO affects ozone negatively between 30° N and 30° S, particularly at the Pacific. The contribution of explanatory variables describing seasonal ozone variation is generally large at mid to high latitudes. We observe ozone contributing effects for potential vorticity and day length, negative effect on ozone for geopotential height and variable ozone effects due to the polar vortex at regions to the north and south of the polar vortices. Recovery of ozone is identified globally. However, recovery rates and uncertainties strongly depend on choices that can be made in defining the explanatory variables. In particular the recovery rates over Antarctica might not be statistically significant. Furthermore, the results show that there is no spatial homogeneous pattern which regression model and explanatory variables provide the best fit to the data and the most accurate estimates of the recovery rates. Overall these results suggest that care has to be taken in determining ozone recovery rates, in particular for the Antarctic ozone hole.


2004 ◽  
Vol 22 (5) ◽  
pp. 1487-1493 ◽  
Author(s):  
E. Echer

Abstract. A relatively recent technique, the multi-resolution analysis (MRA), was applied to the global total ozone column measured by the Nimbus-7 TOMS instrument during 1979–1992. Ozone monthly averages were filtered in orthonormal frequency bands using the Meyer wavelet transform, and the ozone variability was analyzed in different time scales: high frequency oscillations (2–4 months), semiannual variation (6 months), annual variation, quasi-biennial oscillation (QBO), El Niño-Southern Oscillation (ENSO) and solar cycle related variations. MRA was thus showed to be an efficient band-pass filter to isolate different time scale signals. QBO, ENSO and solar cycle related variations in global total ozone are investigated in more detail through spectral and cross-correlation analyses.Key words. Atmospheric composition and structure (middle atmosphere-composition and chemistry) – General or miscellaneous (techniques applicable in three or more fields)


2007 ◽  
Vol 7 (21) ◽  
pp. 5611-5624 ◽  
Author(s):  
H. Garny ◽  
G. E. Bodeker ◽  
M. Dameris

Abstract. Changes in climate are likely to drive changes in stratospheric mixing with associated implications for changes in transport of ozone from tropical source regions to higher latitudes, transport of water vapour and source gas degradation products from the tropical tropopause layer into the mid-latitude lower stratosphere, and changes in the meridional distribution of long-lived trace gases. To diagnose long-term changes in stratospheric mixing, global monthly fields of Lyapunov exponents were calculated on the 450 K, 550 K, and 650 K isentropic surfaces by applying a trajectory model to wind fields from NCEP/NCAR reanalyses over the period 1979 to 2005. Potential underlying geophysical drivers of trends and variability in these mixing fields were investigated by applying a least squares regression model, which included basis functions for a mean annual cycle, seasonally dependent linear trends, the quasi-biennial oscillation (QBO), the solar cycle, and the El Niño Southern Oscillation (ENSO), to zonal mean time series of the Lyapunov exponents. Long-term positive trends in mixing are apparent over southern middle to high latitudes at 450 K through most of the year, while negative trends over southern high latitudes are apparent at 650 K from May to August. Wintertime negative trends in mixing over northern mid-latitudes are apparent at 550 K and 650 K. Over low latitudes, within 40° of the equator, the QBO exerts a strong influence on mixing at all three analysis levels. This QBO influence is strongly modulated by the annual cycle and shows a phase shift across the subtropical mixing barrier. Solar cycle and ENSO influences on mixing are generally not significant. The diagnosed long-term changes in mixing should aid the interpretation of trends in stratospheric trace gases.


Sign in / Sign up

Export Citation Format

Share Document