scholarly journals The role of water-vapour photodissociation on the formation of a deep minimum in mesopause ozone

1998 ◽  
Vol 16 (2) ◽  
pp. 189-196 ◽  
Author(s):  
I. M. Vardavas ◽  
J. H. Carver ◽  
F. W. Taylor

Abstract. A one-dimensional atmospheric photochemical model with an altitude grid of about 1.5 km was used to examine the structure of the global mean vertical ozone profile and its night-time-to-daytime variation in the upper atmosphere. Two distinct ozone layers are predicted, separated by a sharp drop in the ozone concentration near the mesopause. This naturally occurring mesopause ozone deep minimum is primarily produced by the rapid increase in the destruction of water vapour, and hence increase in HOx, at altitudes between 80 and 85 km, a region where water-vapour photodissociation by ultraviolet radiation of the solar Lyman-alpha line is significant, and where the supply of water vapour is maintained by methane oxidation even for very dry conditions at the tropospheric-stratospheric exchange region. The model indicates that the depth of the mesopause ozone minimum is limited by the efficiency with which inactive molecular hydrogen is produced, either by the conversion of atomic hydrogen to molecular hydrogen via one of the reaction channels of H with HO2, or by Lyman-alpha photodissociation of water vapour via the channel that leads to the production of molecular hydrogen. The ozone concentration rapidly recovers above 85 km due to the rapid increase in O produced by the photodissociation of O2 by absorption of ultraviolet solar radiation in the Schumann-Runge bands and continuum. Above 90 km, there is a decrease in ozone due to photolysis as the production of ozone through the three-body recombination of O2 and O becomes slower with decreasing pressure. The model also predicts two peaks in the night-time/daytime ozone ratio, one near 75 km and the other near 110 km, plus a strong peak in the night-time/daytime ratio of OH near 110 km. Recent observational evidence supports the predictions of the model.Key words. Atmospheric composition and structure · Middle atmosphere · Thermosphere · Transmission and scattering of radiation

2014 ◽  
Vol 57 (3) ◽  
Author(s):  
Giovanni Muscari ◽  
Claudia Di Biagio ◽  
Alcide di Sarra ◽  
Marco Cacciani ◽  
Svend Erik Ascanius ◽  
...  

<p>Ground-based measurements of atmospheric parameters have been carried out for more than 20 years at the Network for the Detection of Atmospheric Composition Change (NDACC) station at Thule Air Base (76.5°N, 68.8°W), on the north-western coast of Greenland. Various instruments dedicated to the study of the lower and middle polar atmosphere are installed at Thule in the framework of a long standing collaboration among Danish, Italian, and US research institutes and universities. This effort aims at monitoring the composition, structure and dynamics of the polar stratosphere, and at studying the Arctic energy budget and the role played by different factors, such as aerosols, water vapour, and surface albedo. During the International Polar Year (IPY), in winter 2008-2009, an intensive measurement campaign was conducted at Thule within the framework of the IPY project “Ozone layer and UV radiation in a changing climate evaluated during IPY” (ORACLE-O3) which sought to improve our understanding of the complex mechanisms that lead to the Arctic stratospheric O<span><sub>3</sub></span> depletion. The campaign involved a lidar system, measuring aerosol backscatter and depolarization ratios up to 35 km and atmospheric temperature profiles from 25 to 70 km altitude, a ground-based millimeter-wave spectrometer (GBMS) used to derive stratospheric mixing ratio profiles of different chemical species involved in the stratospheric ozone depletion cycle, and then ground-based radiometers and a Cimel sunphotometer to study the Arctic radiative budget at the surface. The observations show that the surface radiation budget is mainly regulated by the longwave component throughout most of the year. Clouds have a significant impact contributing to enhance the role of longwave radiation. Besides clouds, water vapour seasonal changes produce the largest modification in the shortwave component at the surface, followed by changes in surface albedo and in aerosol amounts. For what concerns the middle atmosphere, during the first part of winter 2008-2009 the cold polar vortex allowed for the formation of polar stratospheric clouds (PSCs) which were observed above Thule by means of the lidar. This period was also characterized by GBMS measurements of low values of O<span><sub>3</sub></span> due to the catalytic reactions prompted by the PSCs. In mid-January, as the most intense Sudden Stratospheric Warming event ever observed in the Arctic occurred, GBMS and lidar measurements of O<span><sub>3</sub></span>, N<span><sub>2</sub></span>O, CO and temperature described its evolution as it propagated from the upper atmosphere to the lower stratosphere.</p>


2004 ◽  
Vol 22 (12) ◽  
pp. 4035-4041 ◽  
Author(s):  
E. Peet ◽  
V. Rudakov ◽  
V. Yushkov ◽  
G. Redaelli ◽  
A. R. MacKenzie

Abstract. In-situ measurements of ozone and water vapour, in the Antarctic lower stratosphere, were made as part of the APE-GAIA mission in September and October 1999. The measurements show a distinct difference above and below the 415K isentrope. Above 415K, the chemically perturbed region of low ozone and water vapour is clearly evident. Below 415K, but still above the tropopause, no sharp meridional gradients in ozone and water vapour were observed. The observations are consistent with analyses of potential vorticity from the European Centre for Medium Range Weather Forecasting, which show smaller radial gradients at 380K than at 450K potential temperature. Ozone loss in the chemically perturbed region above 415K averages 5ppbv per day for mid-September to mid-October. Apparent ozone loss rates in the sub-vortex region are greater, at 7ppbv per day. The data support, therefore, the existence of a sub-vortex region in which meridional transport is more efficient than in the vortex above. The low ozone mixing ratios in the sub-vortex region may be due to in-situ chemical destruction of ozone or transport of ozone-poor air out of the bottom of the vortex. The aircraft data we use cannot distinguish between these two processes. Key words. Meteorology and atmospheric dynamics polar meteorology) – Atmospheric composition and structure (middle atmosphere–composition and chemistry)


2019 ◽  
Vol 19 (15) ◽  
pp. 9927-9947 ◽  
Author(s):  
Franziska Schranz ◽  
Brigitte Tschanz ◽  
Rolf Rüfenacht ◽  
Klemens Hocke ◽  
Mathias Palm ◽  
...  

Abstract. We used 3 years of water vapour and ozone measurements to study the dynamics in the Arctic middle atmosphere. We investigated the descent of water vapour within the polar vortex, major and minor sudden stratospheric warmings and periodicities at Ny-Ålesund. The measurements were performed with the two ground-based microwave radiometers MIAWARA-C and GROMOS-C, which have been co-located at the AWIPEV research base at Ny-Ålesund, Svalbard (79∘ N, 12∘ E), since September 2015. Both instruments belong to the Network for the Detection of Atmospheric Composition Change (NDACC). The almost continuous datasets of water vapour and ozone are characterized by a high time resolution of the order of hours. A thorough intercomparison of these datasets with models and measurements from satellite, ground-based and in situ instruments was performed. In the upper stratosphere and lower mesosphere the MIAWARA-C water vapour profiles agree within 5 % with SD-WACCM simulations and ACE-FTS measurements on average, whereas AuraMLS measurements show an average offset of 10 %–15 % depending on altitude but constant in time. Stratospheric GROMOS-C ozone profiles are on average within 6 % of the SD-WACCM model, the AuraMLS and ACE-FTS satellite instruments and the OZORAM ground-based microwave radiometer which is also located at Ny-Ålesund. During these first 3 years of the measurement campaign typical phenomena of the Arctic middle atmosphere took place, and we analysed their signatures in the water vapour and ozone measurements. Two major sudden stratospheric warmings (SSWs) took place in March 2016 and February 2018 and three minor warmings were observed in early 2017. Ozone-rich air was brought to the pole and during the major warmings ozone enhancements of up to 4 ppm were observed. The reversals of the zonal wind accompanying a major SSW were captured in the GROMOS-C wind profiles which are retrieved from the ozone spectra. After the SSW in February 2018 the polar vortex re-established and the water vapour descent rate in the mesosphere was 355 m d−1. Inside of the polar vortex in autumn we found the descent rate of mesospheric water vapour from MIAWARA-C to be 435 m d−1 on average. We find that the water vapour descent rate from SD-WACCM and the vertical velocity w‾* of the residual mean meridional circulation from SD-WACCM are substantially higher than the descent rates of MIAWARA-C. w‾* and the zonal mean water vapour descent rate from SD-WACCM agree within 10 % after the SSW, whereas in autumn w‾* is up to 40 % higher. We further present an overview of the periodicities in the water vapour and ozone measurements and analysed seasonal and interannual differences.


2002 ◽  
Vol 20 (5) ◽  
pp. 585-598 ◽  
Author(s):  
G. Kockarts

Abstract. Aeronomy is, by definition, a multidisciplinary science which can be used to study the terrestrial atmosphere, as well as any planetary atmosphere and even the interplanetary space. It was officially recognized in 1954 by the International Union of Geodesy and Geophysics. The major objective of the present paper is to show how aeronomy developed since its infancy. The subject is so large that a guide-line has been chosen to see how aeronomy affects our atmospheric knowledge. This guideline is the solar Lyman alpha radiation which has different effects in the solar system. After a short description of the origins of aeronomy the first observations of this line are summarized since the beginning of the space age. Then the consequences of these observations are analyzed for the physics and chemistry of the neutral terrestrial atmosphere. New chemical processes had to be introduced, as well as new transport phenomena. Solar Lyman alpha also influences the structure of the Earth’s ionosphere, particularly the D-region. In the terrestrial exosphere, solar Lyman alpha scattered resonantly by atomic hydrogen is at present the only way to estimate this constituent in an almost collisionless medium. Since planetary atmospheres also contain atomic hydrogen, the Lyman alpha line has been used to deduce the abundance of this constituent. The same is true for the interplanetary space where Lyman alpha observations can be a good tool to determine the concentration. The last section of the paper presents a question which is intended to stimulate further research in aeronomy.Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry; thermosphere – composition and chemistry) – history of geophysics (atmospheric sciences)


Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 201 ◽  
Author(s):  
Yu Zou ◽  
Xue Jiao Deng ◽  
Tao Deng ◽  
Chang Qin Yin ◽  
Fei Li

Isoprene has a potentially large effect on ozone (O3) formation in the subtropical, highly polluted city of Guangzhou. Online measurements of isoprene in Guangzhou city are scarce; thus, isoprene levels were monitored for one year at the Guangzhou Panyu Atmospheric Composition Station (GPACS), a suburban site in Guangzhou, using an online gas chromatography-flame ionization detector (GC–FID) system to investigate the characterization and reactivity of isoprene and its effect on the O3 peak profile in different seasons. The results showed that the daily average mixing ratios of isoprene at GPACS were 0.40, 2.20, 1.40, and 0.13 mixing ratio by volume (ppbv) in spring, summer, autumn, and winter, respectively. These values were considerably higher than the mixing ratios of isoprene in the numerous other subtropical and temperate cities around the world. Furthermore, isoprene ranked first with regard to O3 formation potential (OFP) and propylene-equivalent mixing ratio among 56 measured non–methane hydrocarbons (NMHCs). The ratios of isoprene to cis-2-butene, an exhaust tracer, were determined to estimate the fractions of biogenic and anthropogenic emissions. The results revealed a much greater contribution from biogenic than anthropogenic factors during the daytime in all four seasons. In addition, night-time isoprene emissions were mostly associated with vehicles in winter, and the residual isoprene that remained after photochemical loss during the daytime also persisted into the night. The high levels of isoprene in summer and autumn may cause the strong and broad peaks of the O3 profile because of its association with the most favorable meteorological conditions (e.g., high temperature and intense solar radiation) and the highest OH mixing ratio, which could affect human health by exposing people to a high O3 mixing ratio for prolonged periods. The lower mixing ratios of isoprene resulted in a weak and sharp peak in the O3 profile in both spring and winter. The high level of isoprene in the subtropical zone could accentuate its large impact on atmospheric oxidant capacity and air quality in Guangzhou city.


2001 ◽  
Vol 19 (5) ◽  
pp. 563-569 ◽  
Author(s):  
J. Gumbel

Abstract. Meshes are commonly used as part of instruments for in situ atmospheric measurements. This study analyses the aerodynamic effect of meshes by means of wind tunnel experiments and numerical simulations. Based on the Direct Simulation Monte Carlo method, a simple mesh parameterisation is described and applied to a number of representative flow conditions. For open meshes freely exposed to the flow, substantial compression effects are found both upstream and downstream of the mesh. Meshes attached to close instrument structures, on the other hand, cause only minor flow disturbances. In an accompanying paper, the approach developed here is applied to the quantitative analysis of rocket-borne density measurements in the middle atmosphere.Key words. Atmospheric composition and structure (instruments and techniques; middle atmosphere – composition and chemistry)


2014 ◽  
Vol 7 (5) ◽  
pp. 1201-1211 ◽  
Author(s):  
F. Navas-Guzmán ◽  
J. Fernández-Gálvez ◽  
M. J. Granados-Muñoz ◽  
J. L. Guerrero-Rascado ◽  
J. A. Bravo-Aranda ◽  
...  

Abstract. In this paper, we outline an iterative method to calibrate the water vapour mixing ratio profiles retrieved from Raman lidar measurements. Simultaneous and co-located radiosonde data are used for this purpose and the calibration results obtained during a radiosonde campaign in summer and autumn 2011 are presented. The water vapour profiles measured during night-time by the Raman lidar and radiosondes are compared and the differences between the methodologies are discussed. Then, a new approach to obtain relative humidity profiles by combination of simultaneous profiles of temperature (retrieved from a microwave radiometer) and water vapour mixing ratio (from a Raman lidar) is addressed. In the last part of this work, a statistical analysis of water vapour mixing ratio and relative humidity profiles obtained during 1 year of simultaneous measurements is presented.


2016 ◽  
Author(s):  
Klemens Hocke ◽  
Franziska Schranz ◽  
Eliane Maillard Barras ◽  
Lorena Moreira ◽  
Niklaus Kämpfer

Abstract. Observation and simulation of individual ozone streamers are important for the description and understanding of nonlinear transport processes in the middle atmosphere. A sudden increase in mid-stratospheric ozone occurred above Central Europe on December 4, 2015. The GROunbased Millimeter-wave Ozone Spectrometer (GROMOS) and the Stratospheric Ozone MOnitoring RAdiometer (SOMORA) in Switzerland measured an ozone enhancement of about 30 % at 34 km altitude from December 1 to December 4. A similar ozone increase is simulated by the Specified Dynamics-Whole Atmosphere Community Climate (SD-WACCM) model. Further, the global ozone fields at 34 km altitude from SD-WACCM and the satellite experiment Aura/MLS show a remarkable agreement for the location and the timing of an ozone streamer (large-scale tongue like structure) extending from the subtropics in Northern America over the Atlantic to Central Europe. This agreement indicates that SD-WACCM can inform us about the wind inside the Atlantic ozone streamer. SD-WACCM shows an eastward wind of about 100 m/s inside the Atlantic streamer in the mid-stratosphere. SD-WACCM shows that the Atlantic streamer flows along the edge region of the polar vortex. The Atlantic streamer turns southward at an erosion region of the polar vortex located above the Caspian Sea. The spatial distribution of stratospheric water vapour indicates a filament outgoing from this erosion region. The Atlantic streamer, the polar vortex erosion region and the water vapour filament belong to the process of planetary wave breaking in the so-called surf zone of the Northern mid-latitude winter stratosphere.


2015 ◽  
Vol 15 (12) ◽  
pp. 16655-16696 ◽  
Author(s):  
R. Newton ◽  
G. Vaughan ◽  
H. M. A. Ricketts ◽  
L. L. Pan ◽  
A. J. Weinheimer ◽  
...  

Abstract. We present a series of ozonesonde profiles measured from Manus Island, Papua New Guinea, during February 2014. The experiment formed a part of a wider airborne campaign involving three aircraft based in Guam, to characterise the atmospheric composition above the tropical West Pacific in unprecedented detail. Thirty-nine ozonesondes were launched between 2 and 25 February, of which 34 gave good ozone profiles. Particular attention was paid to measuring the background current of the ozonesonde before launch, as this can amount to half the measured signal in the tropical tropopause layer (TTL). An unexpected contamination event affected these measurements and required a departure from standard operating procedures for the ozonesondes. Comparison with aircraft measurements allows validation of the measured ozone profiles and confirms that for well-characterized sondes (background current <50 nA) a constant background current should be assumed throughout the profile, equal to the minimum value measured during preparation just before launch. From this set of 34 ozonesondes, the minimum reproducible ozone concentration measured in the TTL was 12–13 ppbv; no examples of near-zero ozone concentration as reported by other recent papers were measured. The lowest ozone concentrations coincided with outflow from extensive deep convection to the east of Manus, consistent with uplift of ozone-poor air from the boundary layer. However, these minima were lower than the ozone concentration measured through most of the boundary layer, and were matched only by measurements at the surface in Manus.


2018 ◽  
Vol 36 (1) ◽  
pp. 253-264 ◽  
Author(s):  
Gabriel Augusto Giongo ◽  
José Valentin Bageston ◽  
Paulo Prado Batista ◽  
Cristiano Max Wrasse ◽  
Gabriela Dornelles Bittencourt ◽  
...  

Abstract. The main goals of this work are to characterize and investigate the potential wave sources of four mesospheric fronts identified in the hydroxyl near-infrared (OH-NIR) airglow images, obtained with an all-sky airglow imager installed at Comandante Ferraz Antarctic Station (EACF, as per its Portuguese acronym) located on King George Island in the Antarctic Peninsula. We identified and analyzed four mesospheric fronts in 2011 over King George Island. In addition, we investigate the atmospheric background environment between 80 and 100 km altitude and discuss the ducts and propagation conditions for these waves. For that, we used wind data obtained from a meteor radar operated at EACF and temperature data obtained from the TIMED/SABER satellite. The vertical wavenumber squared, m2, was calculated for each of the four waves. Even though no clearly defined duct (indicated by positive values of m2 sandwiched between layers above and below with m2  < 0) was found in any of the events, favorable propagation conditions for horizontal propagation of the fronts were found in three cases. In the fourth case, the wave front did not find any duct support and it appeared to dissipate near the zenith, transferring energy and momentum to the medium and, consequently, accelerating the wind in the wave propagation direction (near to south) above the OH peak (88–92 km). The likely wave sources for these four cases were investigated by using meteorological satellite images and in two cases we could find that strong instabilities were potential sources, i.e., a cyclonic activity and a large convective cloud cell. In the other two cases it was not possible to associate troposphere sources as potential candidates for the generation of such wave fronts observed in the mesosphere and secondary wave sources were attributed to these cases. Keywords. Atmospheric composition and structure (airglow and aurora) – meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides)


Sign in / Sign up

Export Citation Format

Share Document